A portable impedance microflow cytometer for measuring cellular response to hypoxia

被引:12
作者
Dieujuste, Darryl [1 ,2 ]
Qiang, Yuhao [1 ,2 ]
Du, E. [1 ,2 ]
机构
[1] Florida Atlantic Univ, Dept Ocean & Mech Engn, Boca Raton, FL 33431 USA
[2] Florida Atlantic Univ, Dept Biol Sci, Boca Raton, FL 33431 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
electrical impedance; hypoxia; microfluidics; portable flow cytometer; sickle cell disease; single-cell analysis; SHAPE; DISEASE;
D O I
10.1002/bit.27879
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This article presents the development and testing of a low-cost (<$60), portable, electrical impedance-based microflow cytometer for single-cell analysis under a controlled oxygen microenvironment. The system is based on an AD5933 impedance analyzer chip, a microfluidic chip, and an Arduino microcontroller operated by a custom Android application. A representative case study on human red blood cells (RBCs) affected by sickle cell disease is conducted to demonstrate the capability of the cytometry system. Impedance values of sickle blood samples exhibit remarkable deviations from the common reference line obtained from two normal blood samples. Such deviation is quantified by a conformity score, which allows for the measurement of intrapatient and interpatient variations of sickle cell disease. A low conformity score under oxygenated conditions or drastically different conformity scores between oxygenated and deoxygenated conditions can be used to differentiate a sickle blood sample from normal. Furthermore, an equivalent circuit model of a suspended biological cell is used to interpret the electrical impedance of single flowing RBCs. In response to hypoxia treatment, all samples, regardless of disease state, exhibit significant changes in at least one single-cell electrical property, that is, cytoplasmic resistance and membrane capacitance. The overall response to hypoxia is less in normal cells than those affected by sickle cell disease, where the change in membrane capacitance varies from -23% to seven times as compared with -17% in normal cells. The results reported in this article suggest that the developed method of testing demonstrates the potential application for a low-cost screening technique for sickle cell disease and other diseases in the field and low-resource settings. The developed system and methodology can be extended to analyze cellular response to hypoxia in other cell types.
引用
收藏
页码:4041 / 4051
页数:11
相关论文
共 39 条
[1]   Design of a Portable Low-Cost Impedance Analyzer [J].
Al-Ali, Abdulwadood ;
Elwakil, Ahmad ;
Ahmad, Abdelaziz ;
Maundy, Brent .
PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 1: BIODEVICES, 2017, :104-109
[2]  
Billett H.H., 1990, Clinical methods: The history, physical, and laboratory examinations, V3rd ed.
[3]  
Bow H, 2011, LAB CHIP, V11, P1065, DOI [10.1039/c0lc00472c, 10.1039/c01c00472c]
[4]  
Breniuc L, 2014, INT CONF EXPO ELECTR, P585, DOI 10.1109/ICEPE.2014.6969977
[5]   Exploiting tumour hypoxia in cancer treatment [J].
Brown, JM ;
William, WR .
NATURE REVIEWS CANCER, 2004, 4 (06) :437-447
[6]   SUMO-Specific protease 1 is essential for stabilization of HIF1α during hypoxia [J].
Cheng, Jinke ;
Kang, Xunlei ;
Zhang, Sui ;
Yeh, Edward T. H. .
CELL, 2007, 131 (03) :584-595
[7]   Microfluidic Impedance-Based Flow Cytometry [J].
Cheung, Karen C. ;
Di Berardino, Marco ;
Schade-Kampmann, Grit ;
Hebeisen, Monika ;
Pierzchalski, Arkadiusz ;
Bocsi, Jozsef ;
Mittag, Anja ;
Tarnok, Attila .
CYTOMETRY PART A, 2010, 77A (07) :648-666
[8]   Sodium metabisulfite-induced polymerization of sickle cell hemoglobin incubated in the extracts of three medicinal plants (Anacardium occidentale, Psidium guajava']java, and Terminalia catappa) [J].
Chikezie, Paul Chidoka .
PHARMACOGNOSY MAGAZINE, 2011, 7 (26) :126-132
[9]   Understanding the shape of sickled red cells [J].
Christoph, GW ;
Hofrichter, J ;
Eaton, WA .
BIOPHYSICAL JOURNAL, 2005, 88 (02) :1371-1376
[10]   HPLC studies in hemoglobinopathies [J].
Colah, R. B. ;
Surve, R. ;
Sawant, P. ;
D'Souza, E. ;
Italia, K. ;
Phanasgaonkar, S. ;
Nadkarni, A. H. ;
Gorakshakar, A. C. .
INDIAN JOURNAL OF PEDIATRICS, 2007, 74 (07) :657-662