OBGAN: Minority oversampling near borderline with generative adversarial networks

被引:24
作者
Jo, Wonkeun [1 ]
Kim, Dongil [1 ]
机构
[1] Chungnam Natl Univ, Dept Comp Sci & Engn, 99 Daehak Ro, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
Class imbalance problem; Oversampling; Generative learning; Deep learning; Neural networks; Generative adversarial networks; IMBALANCE;
D O I
10.1016/j.eswa.2022.116694
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Class imbalance is a major issue that degrades the performance of machine learning classifiers in real-world problems. Oversampling methods have been widely used to overcome this issue by generating synthetic data from minority classes. However, conventional oversampling methods often focus only on the minority class and ignore relationships between the minority and majority classes. In this study, we propose an oversampling method called minority oversampling near the borderline with a generative adversarial network (OBGAN). To consider the minority and majority classes, OBGAN employs one independent discriminator for each class. Each discriminator competitively affects the generator to be trained to capture each region of the minority and majority classes. However, the sensitivity of the generator to the discriminator of the minority class is greater than that of the majority class. Hence, the generator learns the minority class with a focus near the borderline. In addition, the architecture and loss function of OBGAN are designed to avoid the mode collapse problem, which commonly occurs in GANs trained on relatively small datasets. Experimental results, involving 21 datasets and 6 benchmark methods, reveal that OBGAN exhibits excellent performance and stability.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Coevolution of Generative Adversarial Networks
    Costa, Victor
    Lourenco, Nuno
    Machado, Penousal
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2019, 2019, 11454 : 473 - 487
  • [42] A survey of generative adversarial networks
    Zhu, Kongtao
    Liu, Xiwei
    Yang, Hongxue
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 2768 - 2773
  • [43] Steganographic Generative Adversarial Networks
    Volkhonskiy, Denis
    Nazarov, Ivan
    Burnaev, Evgeny
    TWELFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2019), 2020, 11433
  • [44] Triple Generative Adversarial Networks
    Li, Chongxuan
    Xu, Kun
    Zhu, Jun
    Liu, Jiashuo
    Zhang, Bo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9629 - 9640
  • [45] Evolutionary Generative Adversarial Networks
    Wang, Chaoyue
    Xu, Chang
    Yao, Xin
    Tao, Dacheng
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (06) : 921 - 934
  • [46] Constrained Generative Adversarial Networks
    Chao, Xiaopeng
    Cao, Jiangzhong
    Lu, Yuqin
    Dai, Qingyun
    Liang, Shangsong
    IEEE ACCESS, 2021, 9 : 19208 - 19218
  • [47] A Review: Generative Adversarial Networks
    Gonog, Liang
    Zhou, Yimin
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 505 - 510
  • [48] A Review on Generative Adversarial Networks
    De Silva, Dilum Maduranga
    Poravi, Guhanathan
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [49] Deconstructing Generative Adversarial Networks
    Zhu, Banghua
    Jiao, Jiantao
    Tse, David
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 7155 - 7179
  • [50] ARGAN: Adversarially Robust Generative Adversarial Networks for Deep Neural Networks Against Adversarial Examples
    Choi, Seok-Hwan
    Shin, Jin-Myeong
    Liu, Peng
    Choi, Yoon-Ho
    IEEE ACCESS, 2022, 10 : 33602 - 33615