OBGAN: Minority oversampling near borderline with generative adversarial networks

被引:23
|
作者
Jo, Wonkeun [1 ]
Kim, Dongil [1 ]
机构
[1] Chungnam Natl Univ, Dept Comp Sci & Engn, 99 Daehak Ro, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
Class imbalance problem; Oversampling; Generative learning; Deep learning; Neural networks; Generative adversarial networks; IMBALANCE;
D O I
10.1016/j.eswa.2022.116694
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Class imbalance is a major issue that degrades the performance of machine learning classifiers in real-world problems. Oversampling methods have been widely used to overcome this issue by generating synthetic data from minority classes. However, conventional oversampling methods often focus only on the minority class and ignore relationships between the minority and majority classes. In this study, we propose an oversampling method called minority oversampling near the borderline with a generative adversarial network (OBGAN). To consider the minority and majority classes, OBGAN employs one independent discriminator for each class. Each discriminator competitively affects the generator to be trained to capture each region of the minority and majority classes. However, the sensitivity of the generator to the discriminator of the minority class is greater than that of the majority class. Hence, the generator learns the minority class with a focus near the borderline. In addition, the architecture and loss function of OBGAN are designed to avoid the mode collapse problem, which commonly occurs in GANs trained on relatively small datasets. Experimental results, involving 21 datasets and 6 benchmark methods, reveal that OBGAN exhibits excellent performance and stability.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Generative Adversarial Networks
    Goodfellow, Ian
    Pouget-Abadie, Jean
    Mirza, Mehdi
    Xu, Bing
    Warde-Farley, David
    Ozair, Sherjil
    Courville, Aaron
    Bengio, Yoshua
    COMMUNICATIONS OF THE ACM, 2020, 63 (11) : 139 - 144
  • [22] Collaborative Learning of Generative Adversarial Networks
    Tsukahara, Takuya
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    Fujiyoshi, Hironobu
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP, 2021, : 492 - 499
  • [23] αβ-GAN: Robust generative adversarial networks
    Aurele Tohokantche, Aurele Tohokantche
    Cao, Wenming
    Mao, Xudong
    Wu, Si
    Wong, Hau-San
    Li, Qing
    INFORMATION SCIENCES, 2022, 593 : 177 - 200
  • [24] DEGAN: Decentralized generative adversarial networks
    Faezi, Mohammad Hashem
    Bijani, Shahriar
    Dolati, Ardeshir
    NEUROCOMPUTING, 2021, 419 : 335 - 343
  • [25] Survey: application and analysis of generative adversarial networks in medical images
    Heng, Yang
    Ma, Yinghua
    Khan, Fiaz Gul
    Khan, Ahmad
    Ali, Farman
    Alzubi, Ahmad Ali
    Hui, Zeng
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 58 (02)
  • [26] A Style-Based Generator Architecture for Generative Adversarial Networks
    Karras, Tero
    Laine, Samuli
    Aila, Timo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) : 4217 - 4228
  • [27] Memory-Augmented Generative Adversarial Networks for Anomaly Detection
    Yang, Ziyi
    Zhang, Teng
    Bozchalooi, Iman Soltani
    Darve, Eric
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (06) : 2324 - 2334
  • [28] A Spin Glass Model for the Loss Surfaces of Generative Adversarial Networks
    Nicholas P. Baskerville
    Jonathan P. Keating
    Francesco Mezzadri
    Joseph Najnudel
    Journal of Statistical Physics, 2022, 186
  • [29] A Spin Glass Model for the Loss Surfaces of Generative Adversarial Networks
    Baskerville, Nicholas P.
    Keating, Jonathan P.
    Mezzadri, Francesco
    Najnudel, Joseph
    JOURNAL OF STATISTICAL PHYSICS, 2022, 186 (02)
  • [30] Convolutional and generative adversarial neural networks in manufacturing
    Kusiak, Andrew
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2020, 58 (05) : 1594 - 1604