Exact explicit travelling wave solutions for (n+1)-dimensional Klein-Gordon-Zakharov equations

被引:23
作者
Li, Jibin [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Kunming Univ Sci & Technol, Ctr Nonlinear Sci Studies, Kunming 650093, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2006.03.088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the methods of dynamical systems for the (n + 1)-dimensional KGS nonlinear wave equations, five classes of exact explicit parametric representations of the bounded travelling solutions are obtained. To guarantee the existence of the above solutions, all parameter conditions are given. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:867 / 871
页数:5
相关论文
共 9 条
[1]  
Byrd PF., 1971, HDB ELLIPTIC INTEGRA
[2]  
Dendy R. O., 1990, PLASMA DYNAMICS
[3]   Instability of standing waves for Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions [J].
Gan, ZH ;
Zhang, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (01) :219-231
[4]  
Guckenheimer J., 2013, APPL MATH SCI, V42, DOI 10.1007/978-1-4612-1140-2
[5]  
[Li Jibin 李继彬], 2003, [云南大学学报. 自然科学版, Journal of Yunnan University (Natural Science)], V25, P176
[6]  
OZAWA T, 1995, ANN I H POINCARE-AN, V12, P459
[7]   Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions [J].
Ozawa, T ;
Tsutaya, K ;
Tsutsumi, Y .
MATHEMATISCHE ANNALEN, 1999, 313 (01) :127-140
[8]   Global existence of small amplitude solutions for the Klein-Gordon-Zakharov equations [J].
Tsutaya, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (12) :1373-1380
[9]  
Zakharov V. E., 1972, Soviet Physics - JETP, V35, P908