Zero modes in a system of Aharonov-Bohm fluxes

被引:15
作者
Geyler, VA
Stovícek, P
机构
[1] Mordovian NP Ogarev State Univ, Dept Math, Saransk 430000, Russia
[2] Czech Tech Univ, Fac Nucl Sci, Dept Math, Prague 12000, Czech Republic
基金
俄罗斯基础研究基金会;
关键词
Aharonov-Bohm flux; Pauli operator; Aharonov-Casher decomposition; zero mode;
D O I
10.1142/S0129055X04002199
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study zero modes of two-dimensional Pauli operators with Aharonov-Bohm fluxes in the case when the solenoids are arranged in periodic structures like chains or lattices. We also consider perturbations to such periodic systems which may be infinite and irregular but they are always supposed to be sufficiently scarce.
引用
收藏
页码:851 / 907
页数:57
相关论文
共 105 条
[1]   Zero modes in finite range magnetic fields [J].
Adam, C ;
Muratori, B ;
Nash, C .
MODERN PHYSICS LETTERS A, 2000, 15 (25) :1577-1581
[2]   Degeneracy of zero modes of the Dirac operator in three dimensions [J].
Adam, C ;
Muratori, B ;
Nash, C .
PHYSICS LETTERS B, 2000, 485 (1-3) :314-318
[3]   Zero modes of the Dirac operator in three dimensions [J].
Adam, C ;
Muratori, B ;
Nash, C .
PHYSICAL REVIEW D, 1999, 60 (12)
[4]   Chern-Simons action for zero-mode supporting gauge fields in three dimensions [J].
Adam, C ;
Muratori, B ;
Nash, C .
PHYSICAL REVIEW D, 2003, 67 (08)
[5]   Multiple zero modes of the Dirac operator in three dimensions [J].
Adam, C ;
Muratori, B ;
Nash, C .
PHYSICAL REVIEW D, 2000, 62 (08) :1-9
[6]   On the Aharonov-Bohm Hamiltonian [J].
Adami, R ;
Teta, A .
LETTERS IN MATHEMATICAL PHYSICS, 1998, 43 (01) :43-53
[7]   GROUND-STATE OF A SPIN-1-2 CHARGED-PARTICLE IN A 2-DIMENSIONAL MAGNETIC-FIELD [J].
AHARONOV, Y ;
CASHER, A .
PHYSICAL REVIEW A, 1979, 19 (06) :2461-2462
[8]   The effect of a magnetic flux line in quantum theory [J].
Aharonov, Y ;
Kaufherr, T .
PHYSICAL REVIEW LETTERS, 2004, 92 (07)
[9]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[10]  
Albeverio S., 1988, Solvable Models in Quantum Mechanics