THE L1-PENALIZED QUANTILE REGRESSION FOR TRADITIONAL CHINESE MEDICINE SYNDROME MANIFESTATION

被引:0
作者
Liu, Yanqing [1 ]
Liu, Guokai [2 ]
Xiu, Xianchao [3 ]
Zhou, Shenglong [4 ]
机构
[1] Beijing Jiaotong Univ, Dept Appl Math, Beijing 100044, Peoples R China
[2] Beijing Univ Chinese Med, Dongzhimen Hosp, Dept Anesthesia, 5 Haiyuncang, Beijing 100700, Peoples R China
[3] Beijing Jiaotong Univ, Dept Appl Math, Sch Sci, Beijing 100044, Peoples R China
[4] Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2017年 / 13卷 / 02期
基金
中国国家自然科学基金;
关键词
high-dimensional linear regression; traditional chinese medicine syndrome manifestation; L-1-penalty; quantile regression; variable selection; alternating direction method; SPARSE SIGNALS; RECOVERY; LASSO; LIKELIHOOD;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Traditional Chinese medicine syndrome manifestation is a nonlinear complex system, which has attracted much attention on its role in clinical study. With the help of the modern technique of the big data analysis, in this paper we provide a high-dimensional quantile regression model for Traditional Chinese medicine syndrome manifestation, where the term "high-dimensional" means that the number of observations is much less than the number of covariates. Moreover, we assume that the unknown vector is sparse, so we propose the use of an L-1-penalized quantile regression estimator to solve the model. Our estimator does not need any knowledge of of standard deviation of the noises or any moment assumptions of the noises. We show that the L-1-penalized quantile regression estimator (QRE) possesses near oracle performance, i.e. with large probability, the L-2 norm of the estimation error is of order O(root s(log p)/n). The result is true for a wide range of noise distributions, even for the Cauchy distribution. In addition, we apply an alternating direction method to find the L-1-penalized QRE, which possesses the global convergence. Numerical results are reported to demonstrate the efficacy of our proposed method.
引用
收藏
页码:279 / 300
页数:22
相关论文
共 38 条
  • [1] [Anonymous], 2005, ECONOMETRIC SOC MONO
  • [2] Age-dependent decline of β-cell function in type 1 diabetes after diagnosis: a multi-centre longitudinal study
    Barker, A.
    Lauria, A.
    Schloot, N.
    Hosszufalusi, N.
    Ludvigsson, J.
    Mathieu, C.
    Mauricio, D.
    Nordwall, M.
    Van der Schueren, B.
    Mandrup-Poulsen, T.
    Scherbaum, W. A.
    Weets, I.
    Gorus, F. K.
    Wareham, N.
    Leslie, R. D.
    Pozzilli, P.
    [J]. DIABETES OBESITY & METABOLISM, 2014, 16 (03) : 262 - 267
  • [3] Square-root lasso: pivotal recovery of sparse signals via conic programming
    Belloni, A.
    Chernozhukov, V.
    Wang, L.
    [J]. BIOMETRIKA, 2011, 98 (04) : 791 - 806
  • [4] l1-PENALIZED QUANTILE REGRESSION IN HIGH-DIMENSIONAL SPARSE MODELS
    Belloni, Alexandre
    Chernozhukov, Victor
    [J]. ANNALS OF STATISTICS, 2011, 39 (01) : 82 - 130
  • [5] SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR
    Bickel, Peter J.
    Ritov, Ya'acov
    Tsybakov, Alexandre B.
    [J]. ANNALS OF STATISTICS, 2009, 37 (04) : 1705 - 1732
  • [6] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [7] Penalized composite quasi-likelihood for ultrahigh dimensional variable selection
    Bradic, Jelena
    Fan, Jianqing
    Wang, Weiwei
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 : 325 - 349
  • [8] From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
    Bruckstein, Alfred M.
    Donoho, David L.
    Elad, Michael
    [J]. SIAM REVIEW, 2009, 51 (01) : 34 - 81
  • [9] Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices
    Cai, T. Tony
    Zhang, Anru
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (01) : 122 - 132
  • [10] New Bounds for Restricted Isometry Constants
    Cai, T. Tony
    Wang, Lie
    Xu, Guangwu
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) : 4388 - 4394