On the rational homotopy type of function spaces

被引:44
作者
Brown, EH [1 ]
Szczarba, RH
机构
[1] Brandeis Univ, Dept Math, Waltham, MA 02254 USA
[2] Yale Univ, Dept Math, New Haven, CT 06520 USA
关键词
D O I
10.1090/S0002-9947-97-01871-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main result of this paper is the construction of a minimal model for the function space F(X,Y) of continuous functions from a finite type, finite dimensional space X to a finite type, nilpotent space Y in terms of minimal models for X and Y. For the component containing the constant map, pi*(F(X, Y)) x Q = pi*(Y) x H-*(X; Q) in positive dimensions. When X is formal, there is a simple formula for the differential of the minimal model in terms of the differential of the minimal model for Y and the coproduct of H*(X; Q). We also give a version of the main result for the space of cross sections of a fibration.
引用
收藏
页码:4931 / 4951
页数:21
相关论文
共 12 条
[1]  
Bousfield A.K., 1976, MEM AM MATH SOC, P179
[2]   THE RATIONAL HOMOLOGY OF FUNCTION-SPACES [J].
BOUSFIELD, AK ;
PETERSON, C ;
SMITH, L .
ARCHIV DER MATHEMATIK, 1989, 52 (03) :275-283
[3]   CONTINUOUS COHOMOLOGY AND REAL HOMOTOPY TYPE [J].
BROWN, EH ;
SZCZARBA, RH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 311 (01) :57-106
[5]  
HILTON P, 1975, N HOLLAND MATH STUDI, V15
[6]  
Lannes J., 1987, LONDON MATH SOC LECT, V117, P97
[7]  
MAY JP, 1992, SIMPLICIAL OBJECTS A
[8]  
Sullivan D. P., 1977, Publ. Math., Inst. Hautes Etud. Sci., P269
[9]  
Vigue-Poirrier Micheline, 1976, J. Differential Geometry, V11, P633
[10]   THE RATIONAL HOMOTOPY OF FUNCTIONAL SPACES [J].
VIGUEPOIRRIER, M .
MANUSCRIPTA MATHEMATICA, 1986, 56 (02) :177-191