Fault-tolerant detection of a quantum error

被引:146
作者
Rosenblum, S. [1 ,2 ,3 ]
Reinhold, P. [1 ,2 ,3 ]
Mirrahimi, M. [3 ,4 ]
Jiang, Liang [1 ,2 ,3 ]
Frunzio, L. [1 ,2 ,3 ]
Schoelkopf, R. J. [1 ,2 ,3 ]
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
[2] Yale Univ, Dept Phys, New Haven, CT 06511 USA
[3] Yale Univ, Yale Quantum Inst, New Haven, CT 06520 USA
[4] INRIA Paris, QUANTIC Team, 2 Rue Simone Iff, F-75012 Paris, France
基金
美国国家科学基金会;
关键词
COMPUTATION;
D O I
10.1126/science.aat3996
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A critical component of any quantum error-correcting scheme is detection of errors by using an ancilla system. However, errors occurring in the ancilla can propagate onto the logical qubit, irreversibly corrupting the encoded information. We demonstrate a fault-tolerant error-detection scheme that suppresses spreading of ancilla errors by a factor of 5, while maintaining the assignment fidelity. The same method is used to prevent propagation of ancilla excitations, increasing the logical qubit dephasing time by an order of magnitude. Our approach is hardware-efficient, as it uses a single multilevel transmon ancilla and a cavity-encoded logical qubit, whose interaction is engineered in situ by using an off-resonant sideband drive. The results demonstrate that hardware-efficient approaches that exploit system-specific error models can yield advances toward fault-tolerant quantum computation.
引用
收藏
页码:266 / 269
页数:4
相关论文
共 20 条
[1]   Subsystem fault tolerance with the Bacon-Shor code [J].
Aliferis, Panos ;
Cross, Andrew W. .
PHYSICAL REVIEW LETTERS, 2007, 98 (22)
[2]  
[Anonymous], 2016, ARXIV161003507
[3]   QUANTUM NONDEMOLITION MEASUREMENT OF SMALL PHOTON NUMBERS BY RYDBERG-ATOM PHASE-SENSITIVE DETECTION [J].
BRUNE, M ;
HAROCHE, S ;
LEFEVRE, V ;
RAIMOND, JM ;
ZAGURY, N .
PHYSICAL REVIEW LETTERS, 1990, 65 (08) :976-979
[4]   Fault-tolerant error correction with efficient quantum codes [J].
DiVincenzo, DP ;
Shor, PW .
PHYSICAL REVIEW LETTERS, 1996, 77 (15) :3260-3263
[5]   Restrictions on Transversal Encoded Quantum Gate Sets [J].
Eastin, Bryan ;
Knill, Emanuel .
PHYSICAL REVIEW LETTERS, 2009, 102 (11)
[6]   Surface codes: Towards practical large-scale quantum computation [J].
Fowler, Austin G. ;
Mariantoni, Matteo ;
Martinis, John M. ;
Cleland, Andrew N. .
PHYSICAL REVIEW A, 2012, 86 (03)
[7]   Error-Transparent Quantum Gates for Small Logical Qubit Architectures [J].
Kapit, Eliot .
PHYSICAL REVIEW LETTERS, 2018, 120 (05)
[8]   Resilient quantum computation: error models and thresholds [J].
Knill, E ;
Laflamme, R ;
Zurek, WH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1969) :365-384
[9]   Hardware-Efficient Autonomous Quantum Memory Protection [J].
Leghtas, Zaki ;
Kirchmair, Gerhard ;
Vlastakis, Brian ;
Schoelkopf, Robert J. ;
Devoret, Michel H. ;
Mirrahimi, Mazyar .
PHYSICAL REVIEW LETTERS, 2013, 111 (12)
[10]   Decoherence-free subspaces for quantum computation [J].
Lidar, DA ;
Chuang, IL ;
Whaley, KB .
PHYSICAL REVIEW LETTERS, 1998, 81 (12) :2594-2597