A generalization of Numerov's method for the numerical solution of the Schrodinger equation in two dimensions

被引:7
作者
Avdelas, G [1 ]
Konguetsof, A [1 ]
Simos, TE [1 ]
机构
[1] Democritus Univ Thrace, Sch Engn, Dept Civil Engn, Sect Math, GR-67100 Xanthi, Greece
来源
COMPUTERS & CHEMISTRY | 2000年 / 24卷 / 05期
关键词
two-dimensional Schrodinger equation; finite differences; Numerov method; discretization; five-point formula; elliptic differential equations; eigenvalue problem; Coulomb potential;
D O I
10.1016/S0097-8485(99)00096-0
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper generalizations of the well known Numerov's method are obtained. The local truncation errors of the new methods are presented and the result of the application of the new methods to a two-dimensional Schrodinger equation in an equal space discretization is presented. Numerical illustrations show the efficiency of the new methods compared with the known five-point formula in two coulombic potentials. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:577 / 584
页数:8
相关论文
共 23 条
[1]  
Allison A. C., 1970, Journal of Computational Physics, V6, P378, DOI 10.1016/0021-9991(70)90037-9
[2]   Embedded methods for the numerical solution of the Schrodinger equation [J].
Avdelas, G ;
Simos, TE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (02) :85-102
[3]   P-stability and exponential-fitting methods for y''=f(x, y) [J].
Coleman, JP ;
Ixaru, LG .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1996, 16 (02) :179-199
[5]   NUMERICAL-SOLUTION OF SCHROEDINGERS RADIAL EQUATION [J].
HAJJ, FY ;
KOBEISSE, H ;
NASSIF, NR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1974, 16 (02) :150-159
[7]   Operations on oscillatory functions [J].
Ixaru, LG .
COMPUTER PHYSICS COMMUNICATIONS, 1997, 105 (01) :1-19
[8]   Four-step exponential-fitted methods for nonlinear physical problems [J].
Ixaru, LG ;
VandenBerghe, G ;
DeMeyer, H ;
VanDaele, M .
COMPUTER PHYSICS COMMUNICATIONS, 1997, 100 (1-2) :56-70
[9]   PIECEWISE PERTURBATION-METHODS FOR CALCULATING EIGENSOLUTIONS OF A COMPLEX OPTICAL-POTENTIAL [J].
IXARU, LG ;
RIZEA, M ;
VERTSE, T .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 85 (02) :217-230
[10]   Explicit sixth-order Bessel and Neumann fitted method for the numerical solution of the Schrodinger equation [J].
Simos, TE .
COMPUTERS IN PHYSICS, 1998, 12 (06) :635-640