A NOVEL DETERMINISTIC METHOD FOR LARGE-SCALE BLIND SOURCE SEPARATION

被引:0
作者
Bousse, Martijn [1 ]
Debals, Otto [1 ,2 ]
De lathauwer, Lieven [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
[2] KU Leuven Kulak, Grp Sci Engn & Technol, B-8500 Kortrijk, Belgium
来源
2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2015年
关键词
Blind source separation; big data; higher-order tensor; tensor decomposition; low-rank approximation; CANONICAL POLYADIC DECOMPOSITION; INDEPENDENT COMPONENT ANALYSIS; TENSOR DECOMPOSITIONS; L-R; UNIQUENESS; ALGORITHMS; RANK-(L-R; TERMS; RANK;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel deterministic method for blind source separation is presented. In contrast to common methods such as independent component analysis, only mild assumptions are imposed on the sources. On the contrary, the method exploits a hypothesized (approximate) intrinsic low-rank structure of the mixing vectors. This is a very natural assumption for problems with many sensors. As such, the blind source separation problem can be reformulated as the computation of a tensor decomposition by applying a low-rank approximation to the tensorized mixing vectors. This allows the introduction of blind source separation in certain big data applications, where other methods fall short.
引用
收藏
页码:1890 / 1894
页数:5
相关论文
共 30 条
  • [1] Blind system identification
    AbedMeraim, K
    Qui, WZ
    Hua, YB
    [J]. PROCEEDINGS OF THE IEEE, 1997, 85 (08) : 1310 - 1322
  • [2] [Anonymous], 1974, MICROWAVE MOBILE CO
  • [3] Bertrand A., 2015, IEEE T NEURAL SYSTEM
  • [4] Multidimensional compressed sensing and their applications
    Caiafa, Cesar F.
    Cichocki, Andrzej
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2013, 3 (06) : 355 - 380
  • [5] Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
  • [6] Cichocki A., 2002, ADAPTIVE BLIND SIGNA, V1
  • [7] Tensor Decompositions for Signal Processing Applications
    Cichocki, Andrzej
    Mandic, Danilo P.
    Anh Huy Phan
    Caiafa, Cesar F.
    Zhou, Guoxu
    Zhao, Qibin
    De Lathauwer, Lieven
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (02) : 145 - 163
  • [8] Comon P, 2010, HANDBOOK OF BLIND SOURCE SEPARATION: INDEPENDENT COMPONENT ANALYSIS AND APPLICATIONS, P1
  • [9] De Lathauwer Lieven, 2012, Latent Variable Analysis and Signal Separation. Proceedings 10th International Conference, LVA/ICA 2012, P1, DOI 10.1007/978-3-642-28551-6_1
  • [10] DECOMPOSITIONS OF A HIGHER-ORDER TENSOR IN BLOCK TERMS-PART II: DEFINITIONS AND UNIQUENESS
    De Lathauwer, Lieven
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) : 1033 - 1066