Lyapunov density for coupled systems

被引:9
作者
Rajaram, R. [1 ]
Vaidya, U. G. [2 ]
机构
[1] Kent State Univ, Dept Math Sci, Ashtabula, OH 44004 USA
[2] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
关键词
advection equation; density function; almost everywhere uniform stability; STABILITY;
D O I
10.1080/00036811.2014.886105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a necessary and sufficient condition for the existence of Lyapunov density for a system of coupled autonomous ordinary differential equations. In particular, we characterize the kinds of couplings that preserve almost everywhere uniform stability of the origin provided the isolated systems have an almost everywhere uniformly stable equilibrium point at the origin.
引用
收藏
页码:169 / 183
页数:15
相关论文
共 7 条
[1]  
Khalil Hassan K, 2002, Nonlinear Systems, V3rd
[2]  
Lasota A, 1994, CHAOS FRACTALS NOISE
[3]  
Prajna S., 2004, IEEE T AUTOMATIC CON, V49, P1
[4]  
Prajna S., 2003, DIRECTIONS MATH SYST, P1
[5]   Stability in the almost everywhere sense: A linear transfer operator approach [J].
Rajaram, R. ;
Vaidya, U. ;
Fardad, M. ;
Ganapathysubramanian, B. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (01) :144-156
[6]   A dual to Lyapunov's stability theorem [J].
Rantzer, A .
SYSTEMS & CONTROL LETTERS, 2001, 42 (03) :161-168
[7]   Lyapunov measure for almost everywhere stability [J].
Vaidya, Umesh ;
Mehta, Prashant G. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (01) :307-323