Experimental and kinetic studies of ignition processes of the methane-n-heptane mixtures

被引:38
作者
Liang, Junjie [1 ,2 ]
Zhang, Zunhua [1 ,2 ]
Li, Gesheng [1 ,2 ]
Wan, Qi [2 ]
Xu, Li [2 ]
Fan, Shidong [2 ]
机构
[1] Wuhan Univ Technol, Minist Educ, Key Lab High Performance Ship Technol, Wuhan 430063, Hubei, Peoples R China
[2] Wuhan Univ Technol, Sch Energy & Power Engn, 1178 He Ping Ave, Wuhan 430063, Hubei, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Methane-n-heptane mixtures; Ignition delay time; Shock tube; Chemical kinetics; DELAY TIMES; SHOCK-TUBE; NATURAL-GAS; FUEL BLENDS; ELEVATED PRESSURES; ENGINE CONDITIONS; COMBUSTION; HYDROGEN; TEMPERATURES; EMISSIONS;
D O I
10.1016/j.fuel.2018.08.041
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Ignition delay times of methane-n-heptane mixtures at different methane contents were determined at various initial temperatures through a shock tube setup. Based on comparisons between the experimental and modeled values of ignition delay times of methane-n-heptane mixtures, the applicability of two reaction schemes to the simulation of the zero-dimensional constant-volume adiabatic ignition processes of the mixtures at the present conditions was validated. Then mole fractions of the species and main radicals involved and rates of the main elementary reactions for the formation and consumption of methane and n-heptane in the ignition processes were analyzed. The results show that a nonlinear relationship exists between the ignition delay time of methane-n-heptane mixtures and the methane content. The ignition delay time of methane will change significantly when even a little amount of n-heptane is mixed with methane. It is proved that the two reaction mechanisms studied can predict accurately the ignition delay times of the mixtures under the present initial conditions. Due to the existence of n-heptane, all methane will be reacted early, and the more n-heptane there exists, the earlier all methane is consumed. Different from HO2, CH3 and H2O2, concentrations of OH, H and O remain low during the ignition period, and only when approaching the ignition time points, their concentrations begin to rise. The formation and consumption reactions for methane occur mainly near the ignition time points. For n-heptane, it is consumed in a short time, and the decomposition reactions prevail at the start of the ignition period. Then the reactions between n-heptane and the radicals take the dominant positions. Compared to methane, n-heptane has a stronger competitiveness for the radicals.
引用
收藏
页码:522 / 529
页数:8
相关论文
共 50 条
  • [21] Experimental and kinetic study of NO/NO2 chemical effects on n-heptane high temperature auto-ignition
    Yang, Can
    Wang, Weiye
    Li, Yuhang
    Cheng, Xiaobei
    COMBUSTION AND FLAME, 2023, 249
  • [22] Experimental Investigation and Benchmark Study of Oxidation of Methane-Propane-n-Heptane Mixtures at Pressures up to 100 Bar
    Schuh, Sebastian
    Ramalingam, Ajoy Kumar
    Minwegen, Heiko
    Heufer, Karl Alexander
    Winter, Franz
    ENERGIES, 2019, 12 (18)
  • [23] Ignition delay time measurements and kinetic modeling of methane/diesel mixtures at elevated pressures
    Zhu, Jizhen
    Li, Jing
    Wang, Sixu
    Raza, Mohsin
    Qian, Yong
    Feng, Yuan
    Yu, Liang
    Mao, Yebing
    Lu, Xingcai
    COMBUSTION AND FLAME, 2021, 229 (229)
  • [24] Interpretation of role of methane in low-temperature oxidation processes of methane/n-heptane mixtures
    Song, Chaojie
    Liang, Junjie
    Zhang, Zunhua
    Li, Gesheng
    Zhang, Cheng
    FUEL, 2022, 328
  • [25] Experimental and kinetic modelling studies on di-n-butyl ether (DBE) low temperature auto-ignition
    Zhong, Anhao
    Han, Dong
    COMBUSTION AND FLAME, 2022, 237
  • [26] Experimental and modeling study on ignition delays of lean mixtures of methane, hydrogen, oxygen, and argon at elevated pressures
    Zhang, Yingjia
    Huang, Zuohua
    Wei, Liangjie
    Zhang, Jiaxiang
    Law, Chung K.
    COMBUSTION AND FLAME, 2012, 159 (03) : 918 - 931
  • [27] Kinetic model of alkane oxidation at high pressure from methane to n-heptane
    Zhukov, Victor P.
    COMBUSTION THEORY AND MODELLING, 2009, 13 (03) : 427 - 442
  • [28] An experimental and kinetic modeling study of ammonia/n-heptane blends
    Dong, Shijun
    Wang, Bowen
    Jiang, Zuozhou
    Li, Yuhang
    Gao, Wenxue
    Wang, Zhaowen
    Cheng, Xiaobei
    Curran, Henry J.
    COMBUSTION AND FLAME, 2022, 246
  • [29] HIGH PRESSURE IGNITION BEHAVIORS OF METHANE/ETHANE/PROPANE- n-HEPTANE MIXTURES REPRESENTING NATURAL GAS-DIESEL DUAL FUEL
    Heng, Yijun
    Liang, Junjie
    Li, Gesheng
    Li, Feng
    Yu, Fulin
    THERMAL SCIENCE, 2024, 28 (1A): : 115 - 132
  • [30] Effects of N2O addition on the ignition of H2-O2 mixtures: Experimental and detailed kinetic modeling study
    Mathieu, O.
    Levacque, A.
    Petersen, E. L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (20) : 15393 - 15405