Chaos in the Periodically Parametrically Excited Lorenz System

被引:0
作者
Huang, Weisheng [1 ]
Yang, Xiao-Song [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2021年 / 31卷 / 08期
基金
中国国家自然科学基金;
关键词
Chaos; Lorenz system; parametrically excited system; pseudo-stable manifold; COMPUTER-ASSISTED PROOF; EQUATIONS; PRETURBULENCE; TRANSITION;
D O I
10.1142/S021812742130024X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We demonstrate in this paper a new chaotic behavior in the Lorenz system with periodically excited parameters. We focus on the parameters with which the Lorenz system has only two asymptotically stable equilibrium points, a saddle and no chaotic dynamics. A new mechanism of generating chaos in the periodically excited Lorenz system is demonstrated by showing that some trajectories can visit different attractor basins due to the periodic variations of the attractor basins of the time-varying stable equilibrium points when a parameter of the Lorenz system is varying periodically.
引用
收藏
页数:15
相关论文
共 31 条
[1]  
[Anonymous], 1982, APPL MATH SCI
[2]  
[Anonymous], 1968, T MOSCOW MATH SOC
[3]  
[Anonymous], 1993, Chaos in Dynamical Systems
[4]   Species fluctuations sustained by a cyclic succession at the edge of chaos [J].
Beninca, Elisa ;
Ballantine, Bill ;
Ellner, Stephen P. ;
Huisman, Jef .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (20) :6389-6394
[5]  
Binous H., 2008, Wolfram Library Archive
[6]   Chaos suppression in the parametrically driven Lorenz system -: art. no. 036206 [J].
Choe, CU ;
Höhne, K ;
Benner, H ;
Kivshar, YS .
PHYSICAL REVIEW E, 2005, 72 (03)
[7]   α-flips and T-points in the Lorenz system [J].
Creaser, Jennifer L. ;
Krauskopf, Bernd ;
Osinga, Hinke M. .
NONLINEARITY, 2015, 28 (03) :R39-R65
[8]   Characterization of a periodically driven chaotic dynamical system [J].
Crisanti, A ;
Falcioni, M ;
Lacorata, G ;
Purini, R ;
Vulpiani, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (02) :371-383
[9]   Global bifurcations of the Lorenz manifold [J].
Doedel, Eusebius J. ;
Krauskopf, Bernd ;
Osinga, Hinke M. .
NONLINEARITY, 2006, 19 (12) :2947-2972
[10]   Global organization of phase space in the transition to chaos in the Lorenz system [J].
Doedel, Eusebius J. ;
Krauskopf, Bernd ;
Osinga, Hinke M. .
NONLINEARITY, 2015, 28 (11) :R113-R139