Terahertz frequency bandpass filters

被引:31
作者
Gallant, A. J.
Kaliteevski, M. A.
Brand, S.
Wood, D.
Petty, M.
Abram, R. A.
Chamberlain, J. M. [1 ]
机构
[1] Univ Durham, Dept Phys, Durham DH1 3LE, England
[2] Univ Durham, Sch Engn, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.2756072
中图分类号
O59 [应用物理学];
学科分类号
摘要
The design, measurement, and analysis of a range of artificial materials for use at terahertz frequencies are described. The chosen structures consist of arrays of cylindrical gold-plated pillars with period comparable to the wavelength of incident radiation. An ultraviolet (UV) micromachining approach to the fabrication of these high aspect-ratio pillars is described using the negative epoxy-based resin SU8. Lattice fence structures are also realized using the same method. Terahertz (THz) frequency time domain spectroscopy is performed on these structures in the range 200 GHz to 3.0 THz and the relative transmission of the structures is determined. The pass and stop bands are observed with peak transmission of up to 97%. Finite difference time domain simulations and complex photonic band structure calculations are shown to provide good descriptions of the electromagnetic properties of the structures and are used to interpret the observed transmission spectra. (c) American Institute of Physics.
引用
收藏
页数:5
相关论文
共 19 条
[1]   Negative refraction through an impedance-matched left-handed metamaterial slab [J].
Aydin, K ;
Ozbay, E .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2006, 23 (03) :415-418
[2]   Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods [J].
Brand, S. ;
Abram, R. A. ;
Kaliteevski, M. A. .
PHYSICAL REVIEW B, 2007, 75 (03)
[3]   Where optics meets electronics: recent progress in decreasing the terahertz gap [J].
Chamberlain, JM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1815) :199-211
[4]   Terahertz semiconductor-heterostructure laser [J].
Köhler, R ;
Tredicucci, A ;
Beltram, F ;
Beere, HE ;
Linfield, EH ;
Davies, AG ;
Ritchie, DA ;
Iotti, RC ;
Rossi, F .
NATURE, 2002, 417 (6885) :156-159
[5]   PHOTONIC BAND STRUCTURES OF 2-DIMENSIONAL SYSTEMS CONTAINING METALLIC COMPONENTS [J].
KUZMIAK, V ;
MARADUDIN, AA ;
PINCEMIN, F .
PHYSICAL REVIEW B, 1994, 50 (23) :16835-16844
[6]   Absorption losses in periodic arrays of thin metallic wires [J].
Markos, P ;
Soukoulis, CM .
OPTICS LETTERS, 2003, 28 (10) :846-848
[7]   Wire media with negative effective permittivity: A quasi-static model [J].
Maslovski, SI ;
Tretyakov, SA ;
Belov, PA .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2002, 35 (01) :47-51
[8]   Recent advances in terahertz imaging [J].
Mittleman, DM ;
Gupta, M ;
Neelamani, R ;
Baraniuk, RG ;
Rudd, JV ;
Koch, M .
APPLIED PHYSICS B-LASERS AND OPTICS, 1999, 68 (06) :1085-1094
[9]   OPTICAL-PROPERTIES OF THE METALS AL, CO, CU, AU, FE, PB, NI, PD, PT, AG, TI, AND W IN THE INFRARED AND FAR INFRARED [J].
ORDAL, MA ;
LONG, LL ;
BELL, RJ ;
BELL, SE ;
BELL, RR ;
ALEXANDER, RW ;
WARD, CA .
APPLIED OPTICS, 1983, 22 (07) :1099-1119
[10]   Low frequency plasmons in thin-wire structures [J].
Pendry, JB ;
Holden, AJ ;
Robbins, DJ ;
Stewart, WJ .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (22) :4785-4809