A Degenerate Isoperimetric Problem in the Plane

被引:0
作者
Dadok, Jiri [1 ]
Sternberg, Peter [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
Degenerate metric; Isoperimetric problem; Geodesics;
D O I
10.1007/s12220-017-9902-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish sufficient conditions for existence of curves minimizing length as measured with respect to a degenerate metric on the plane while enclosing a specified amount of Euclidean area. Non-existence of minimizers can occur and examples are provided. This continues the investigation begun in Alama et al. (Commun Pure Appl Math 70:340-377, 2017) where the metric near the singularities equals a quadratic polynomial times the standard metric. Here, we allow the conformal factor to be any smooth non-negative potential vanishing at isolated points provided the Hessian at these points is positive definite. These isoperimetric curves, appropriately parametrized, arise as traveling wave solutions to a bi-stable Hamiltonian system.
引用
收藏
页码:2225 / 2253
页数:29
相关论文
共 10 条
[1]   A Degenerate Isoperimetric Problem and Traveling Waves to a Bistable Hamiltonian System [J].
Alama, Stan ;
Bronsard, Lia ;
Contreras, Andres ;
Dadok, Jiri ;
Sternberg, Peter .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (02) :340-377
[2]  
Bridson M. R., 1999, METRIC SPACES NONPOS, V319
[3]   Some Isoperimetric Problems in Planes with Density [J].
Canete, Antonio ;
Miranda, Michele, Jr. ;
Vittone, Davide .
JOURNAL OF GEOMETRIC ANALYSIS, 2010, 20 (02) :243-290
[4]   THE ISOPERIMETRIC PROBLEM ON PLANES WITH DENSITY [J].
Carroll, Colin ;
Jacob, Adam ;
Quinn, Conor ;
Walters, Robin .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 78 (02) :177-197
[5]  
Dahlberg J, 2010, N J MATH, V15, P31
[6]  
Gromov M, 1985, PROGR MATH
[8]  
Monteil A, ARXIV160205487
[9]   On the isoperimetric problem in Euclidean space with density [J].
Rosales, Cesar ;
Canete, Antonio ;
Bayle, Vincent ;
Morgan, Frank .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 31 (01) :27-46
[10]   On the heteroclinic connection problem for multi-well gradient systems [J].
Zuniga, Andres ;
Sternberg, Peter .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (07) :3987-4007