Proton membrane fuel cell stack performance prediction through deep learning method

被引:15
作者
Fu, Jiangtao [1 ]
Fu, Zhumu [1 ]
Song, Shuzhong [1 ]
机构
[1] Henan Univ Sci & Technol, Luoyang 471009, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Proton membrane fuel cell; Performance prediction; Fuel cell stack model; Deep learning; Gate recurrent unit; PROGNOSTICS; PARAMETERS; DEGRADATION; MANAGEMENT; NETWORK; SYSTEM; FILTER; MODEL; LIFE;
D O I
10.1016/j.egyr.2022.04.015
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Proton exchange membrane fuel cell (PEMFC) system is a complex non-linear system affected by many factors with interaction, which make it difficult to build an accurate mathematical model to predict the fuel cell performance. A fuel cell performance model using a Lattice gate recurrent unit (LGRU) based on recurrent neuron network (RNN) is proposed in this paper. The proposed LGRU method can remember the previous information both in time and in depth, which help to accurately predict the performance of the fuel cell stack while reducing the computation burden. Simulation and experiment are implemented on a 2.5 kW fuel cell stack. The Root mean square error (RMSE) and of voltage prediction can reach 0.0038 and the RMSE of the temperature prediction can reach 0.0040 The fuel cell stack model established using LGRU method can be efficiently used in energy management strategy designing for accurately predicting the fuel cell stack performance. (c) 2022 The Authors. Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc- nd/4.0/).
引用
收藏
页码:5387 / 5395
页数:9
相关论文
共 31 条
[1]   Process modeling of an automotive pem fuel cell system [J].
Akroot, Abdulrazzak ;
Ekici, Ozgur ;
Koksal, Murat .
INTERNATIONAL JOURNAL OF GREEN ENERGY, 2019, 16 (10) :778-788
[2]   Degradation pattern prediction of a polymer electrolyte membrane fuel cell stack with series reliability structure via durability data of single cells [J].
Bae, Suk Joo ;
Kim, Seong-Joon ;
Lee, Jin-Hwa ;
Song, Inseob ;
Kim, Nam-In ;
Seo, Yongho ;
Kim, Ki Buem ;
Lee, Naesung ;
Park, Jun-Young .
APPLIED ENERGY, 2014, 131 :48-55
[3]   An accelerated calendar and cycle life study of Li-ion cells [J].
Bloom, I ;
Cole, BW ;
Sohn, JJ ;
Jones, SA ;
Polzin, EG ;
Battaglia, VS ;
Henriksen, GL ;
Motloch, C ;
Richardson, R ;
Unkelhaeuser, T ;
Ingersoll, D ;
Case, HL .
JOURNAL OF POWER SOURCES, 2001, 101 (02) :238-247
[4]   Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell [J].
Bressel, Mathieu ;
Hilairet, Mickael ;
Hissel, Daniel ;
Bouamama, Belkacem Ould .
APPLIED ENERGY, 2016, 164 :220-227
[5]   Momentum-species-heat-electrochemistry distribution characteristics within solid oxide fuel cell stack with complex inter-digital fuel channels [J].
Ding, Kai ;
Zhu, Mingfeng ;
Han, Zhen ;
Kochetov, Vladimir ;
Lu, Liu ;
Chen, Daifen .
IONICS, 2020, 26 (09) :4567-4578
[6]   Semi-empirical PEM fuel cells model using whale optimization algorithm [J].
El-Fergany, Attia A. ;
Hasanien, Hany M. ;
Agwa, Ahmed M. .
ENERGY CONVERSION AND MANAGEMENT, 2019, 201
[7]   A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell [J].
Fathy, Ahmed ;
Abd Elaziz, Mohamed ;
Alharbi, Abdullah G. .
RENEWABLE ENERGY, 2020, 146 :1833-1845
[8]   Evaluating the influence of requirements in fuel cell system design using Design Requirement Maps [J].
Fladung, Alexander ;
Scholz, Hannes ;
Berger, Oliver ;
Hanke-Rauschenbach, Richard .
FUEL CELLS, 2021, 21 (04) :347-362
[9]  
Hwang J.J., 2009, J POWER SOURCES, P1234
[10]   Wavelet-Based Approach for Online Fuel Cell Remaining Useful Lifetime Prediction [J].
Ibrahim, Mona ;
Steiner, Nadia Yousfi ;
Jemei, Samir ;
Hissel, Daniel .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (08) :5057-5068