Gross primary production estimation from MODIS data with vegetation index and photosynthetically active radiation in maize
被引:62
作者:
Wu, Chaoyang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing Applicat, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Chinese Acad Sci, Grad Univ, Beijing 100101, Peoples R ChinaChinese Acad Sci, Inst Remote Sensing Applicat, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Wu, Chaoyang
[1
,2
]
Niu, Zheng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing Applicat, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R ChinaChinese Acad Sci, Inst Remote Sensing Applicat, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Niu, Zheng
[1
]
Gao, Shuai
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Remote Sensing Applicat, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Chinese Acad Sci, Grad Univ, Beijing 100101, Peoples R ChinaChinese Acad Sci, Inst Remote Sensing Applicat, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
Gao, Shuai
[1
,2
]
机构:
[1] Chinese Acad Sci, Inst Remote Sensing Applicat, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100101, Peoples R China
Gross primary production (GPP) is a significant important parameter for carbon cycle and climate change research. Remote sensing combined with other climate and meteorological data offers a convenient tool for large-scale GPP estimation. GPP was estimated as a product of vegetation indices (VIs) and photosynthetically active radiation (PAR). Four kinds of vegetation indices [the normalized difference vegetation index (NDVI), the weighted difference vegetation index, the soil-adjusted vegetation index, and the enhanced vegetation index (EVI)] derived from the Moderate Resolution Imaging Spectroradiometer daily surface reflectance product were selected to test our method. The in situ GPP was calculated using the eddy covariance technique and the PAR data were acquired from meteorological measurements. Because VIs were found to be a reliable proxy of both light use efficiency (LUE) and the fraction of absorbed PAR (f(APAR); R-2 of 0.63-0.87 for LUE and 0.69-0.76 for f(APAR)), the product VI x VI x PAR is used as a measure of GPP according to Monteith logic. Moderate determination coefficients R-2 from 0.65 for NDVI to 0.71 for EVI were obtained when GPP was estimated from a single index in maize. When testing our method, calculating GPP as a product of VI x VI x PAR, the determination coefficients R-2 largely improved, fluctuating from 0.81 to 0.91. EVI x EVI x PAR provided the best estimation of GPP with the highest R-2 of 0.91 because EVI was found to be the best indicator of both LUE and f(APAR) (R-2 of 0.87 and 0.76, respectively). These results will be helpful for the development of future GPP estimation models.
机构:
Technion Israel Inst Technol, Fac Civil & Environm Engn, Haifa, Israel
Univ Nebraska, Sch Nat Resources, Lincoln, NE USATechnion Israel Inst Technol, Fac Civil & Environm Engn, Haifa, Israel
机构:
Chinese Acad Sci, State Key Lab Remote Sensing Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R ChinaChinese Acad Sci, State Key Lab Remote Sensing Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
Liu, Zhengjia
Wu, Chaoyang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, State Key Lab Remote Sensing Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R ChinaChinese Acad Sci, State Key Lab Remote Sensing Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
Wu, Chaoyang
Xu, Shiguang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, State Key Lab Remote Sensing Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R ChinaChinese Acad Sci, State Key Lab Remote Sensing Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
Xu, Shiguang
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS),
2016,
: 4355
-
4358
机构:
Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R ChinaBeijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Cai, Wenwen
Yuan, Wenping
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, State Key Lab Cryospher Sci, Lanzhou, Peoples R ChinaBeijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Yuan, Wenping
Liang, Shunlin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Coll Global Change & Earth Syst Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USABeijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Liang, Shunlin
Zhang, Xiaotong
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Coll Global Change & Earth Syst Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Zhang, Xiaotong
Dong, Wenjie
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R ChinaBeijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Dong, Wenjie
Xia, Jiangzhou
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Coll Global Change & Earth Syst Sci, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Xia, Jiangzhou
Fu, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R ChinaBeijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Fu, Yang
Chen, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R ChinaBeijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Chen, Yang
Liu, Dan
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R ChinaBeijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
Liu, Dan
Zhang, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Inst Arid Meteorol, Key Lab Arid Climat Change & Disaster Reduct Gans, Key Open Lab Arid Climat Change & Disaster Reduct, Lanzhou, Peoples R ChinaBeijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
机构:
Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R ChinaTsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China
Yang, Yuting
Shang, Songhao
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R ChinaTsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China
Shang, Songhao
Guan, Huade
论文数: 0引用数: 0
h-index: 0
机构:
Flinders Univ S Australia, Sch Environm, Adelaide, SA 5001, Australia
Natl Ctr Groundwater Res & Training, Adelaide, SA, AustraliaTsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China
Guan, Huade
Jiang, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R ChinaTsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China