Homoclinic classes for generic C1 vector fields

被引:37
作者
Carballo, CM
Morales, CA
Pacifico, MJ
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22453900 Rio de Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, Brazil
关键词
D O I
10.1017/S0143385702001116
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that homoclinic classes for a residual set of C-1 vector fields X on closed n-manifolds are maximal transitive, and depend continuously on periodic orbit data. In addition, X does not exhibit cycles formed by homoclinic classes. We also prove that a homoclinic class of X is isolated if and only if it is Ohm-isolated, and it is the intersection of its stable set with its unstable set. All these properties are well known for structurally stable Axiom A vector fields.
引用
收藏
页码:403 / 415
页数:13
相关论文
共 19 条
[1]   Creating connections in topology C1 [J].
Arnaud, MC .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 :339-381
[2]  
BEGUIN F, 1999, ANN FS TOULOUSE MATH, V6, P369
[3]  
BHATIA NP, 1979, STABILITY THEORY DYN
[4]  
BONATTI C, 1999, PREPRINT
[5]  
Bonatti PC, 1999, ANN SCI ECOLE NORM S, V32, P135
[6]  
DEMELO W, 1982, GEOMETRIC THEORY DYN
[7]   Connecting invariant manifolds and the solution of the C-1 stability and Omega-stability conjectures for flows [J].
Hayashi, S .
ANNALS OF MATHEMATICS, 1997, 145 (01) :81-137
[8]   A C1 make or break lemma [J].
Hayashi, S .
BOLETIM DA SOCIEDADE BRASILEIRA DE MATEMATICA, 2000, 31 (03) :337-350
[9]  
HAYASHI S, 1998, DOCUMENTA MATH ICM, V2
[10]  
HIRSCH M, 1970, P S PURE MATH, V14, P133