Input-output modeling of nonlinear systems with time-varying linear models

被引:32
作者
Chowdhury, FN [1 ]
机构
[1] Univ Louisiana Lafayette, Dept EECE, Lafayette, LA 70504 USA
基金
美国国家科学基金会;
关键词
ARMAX model; input-output modeling; nonlinear systems; on-line; random walk Kalman filter; time domain;
D O I
10.1109/9.867047
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Time-varying ARMA (AutoRegressive Moving Average) and ARMAX (AutoRegressive Moving Average with Exogenous Inputs) models are proposed fur input-output modeling of nonlinear deterministic and stochastic systems. The coefficients of these models are estimated by a Random Walk Kalman Filter (RWKF). This method requires no prior assumption on the nature of the model coefficients, and is suitable for real-time implementation since no off-line training is needed. A simulation example illustrates the method. Goodness of performance is judged by the quality of the residuals, histograms, autocorrelation functions and the Kolmogorov-Smirnoff test.
引用
收藏
页码:1355 / 1358
页数:4
相关论文
共 16 条
  • [1] ABRAHAM B, 1983, STAT METHODS FORECAS, P364
  • [2] [Anonymous], 1992, Handbook of Intelligent Control
  • [3] Box G, 1976, TIMES SERIES ANAL FO
  • [4] Chowdhury F., 1998, Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104), P283, DOI 10.1109/CCA.1998.728425
  • [5] GELB A, 1974, APPL OPTIMAL ESTIMAT, P348
  • [6] GOODWIN G, 1984, ADAPTIVE FILTERING P, P262
  • [7] KITAGAWA G, 1996, LECT NOTES STAT, P147
  • [8] INPUT OUTPUT PARAMETRIC MODELS FOR NON-LINEAR SYSTEMS .2. STOCHASTIC NON-LINEAR SYSTEMS
    LEONTARITIS, IJ
    BILLINGS, SA
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1985, 41 (02) : 329 - 344
  • [9] Mosca E., 1995, OPTIMAL PREDICTIVE A
  • [10] MRAD RB, 1998, SIGNAL PROCESS, V65, P21