Task Switching Network for Multi-task Learning

被引:12
|
作者
Sun, Guolei [1 ]
Probst, Thomas [1 ]
Paudel, Danda Pani [1 ]
Popovic, Nikola [1 ]
Kanakis, Menelaos [1 ]
Patel, Jagruti [1 ]
Dai, Dengxin [1 ,2 ]
Van Gool, Luc [1 ]
机构
[1] Swiss Fed Inst Technol, Comp Vis Lab, Zurich, Switzerland
[2] MPI Informat, Saarbrucken, Germany
关键词
D O I
10.1109/ICCV48922.2021.00818
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce Task Switching Networks (TSNs), a task-conditioned architecture with a single unified encoder/decoder for efficient multi-task learning. Multiple tasks are performed by switching between them, performing one task at a time. TSNs have a constant number of parameters irrespective of the number of tasks. This scalable yet conceptually simple approach circumvents the overhead and intricacy of task-specific network components in existing works. In fact, we demonstrate for the first time that multi-tasking can be performed with a single task-conditioned decoder. We achieve this by learning task-specific conditioning parameters through a jointly trained task embedding network, encouraging constructive interaction between tasks. Experiments validate the effectiveness of our approach, achieving state-of-the-art results on two challenging multi-task benchmarks, PASCAL-Context and NYUD. Our analysis of the learned task embeddings further indicates a connection to task relationships studied in the recent literature.
引用
收藏
页码:8271 / 8280
页数:10
相关论文
共 50 条
  • [21] Multi-task network embedding
    Xu, Linchuan
    Wei, Xiaokai
    Cao, Jiannong
    Yu, Philip S.
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2019, 8 (02) : 183 - 198
  • [22] Boosted multi-task learning
    Olivier Chapelle
    Pannagadatta Shivaswamy
    Srinivas Vadrevu
    Kilian Weinberger
    Ya Zhang
    Belle Tseng
    Machine Learning, 2011, 85 : 149 - 173
  • [23] An overview of multi-task learning
    Zhang, Yu
    Yang, Qiang
    NATIONAL SCIENCE REVIEW, 2018, 5 (01) : 30 - 43
  • [24] On Partial Multi-Task Learning
    He, Yi
    Wu, Baijun
    Wu, Di
    Wu, Xindong
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1174 - 1181
  • [25] Calibrated Multi-Task Learning
    Nie, Feiping
    Hu, Zhanxuan
    Li, Xuelong
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 2012 - 2021
  • [26] Pareto Multi-Task Learning
    Lin, Xi
    Zhen, Hui-Ling
    Li, Zhenhua
    Zhang, Qingfu
    Kwong, Sam
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [27] Federated Multi-Task Learning
    Smith, Virginia
    Chiang, Chao-Kai
    Sanjabi, Maziar
    Talwalkar, Ameet
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [28] Asynchronous Multi-Task Learning
    Baytas, Inci M.
    Yan, Ming
    Jain, Anil K.
    Zhou, Jiayu
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 11 - 20
  • [29] Learning Task Relational Structure for Multi-Task Feature Learning
    Wang, De
    Nie, Feiping
    Huang, Heng
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1239 - 1244
  • [30] An overview of multi-task learning
    Yu Zhang
    Qiang Yang
    National Science Review, 2018, 5 (01) : 30 - 43