Modeling Dinophysis in Western Andalucia using a autoregressive hidden Markov model

被引:0
|
作者
Aron, Jordan [1 ]
Albert, Paul S. [1 ]
Gribble, Matthew O. [2 ]
机构
[1] NCI, Biostat Branch, Div Canc & Epidemiol, Rockville, MD 20850 USA
[2] Univ Alabama Birmingham, Sch Publ Hlth, Dept Epidemiol, Birmingham, AL 35294 USA
关键词
Autoregressive; EM algorithm; Harmful algal bloom; Missing data; Toxins; OKADAIC ACID; BLOOMS;
D O I
10.1007/s10651-022-00534-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Dinophysis spp. can produce diarrhetic shellfish toxins (DST) including okadaic acid and dinophysistoxins, and some strains can also produce non-diarrheic pectenotoxins. Although DSTs are of human health concern and have motivated environmental monitoring programs in many locations, these monitoring programs often have temporal data gaps (e.g., days without measurements). This paper presents a model for the historical time-series, on a daily basis, of DST-producing toxigenic Dinophysis in 8 monitored locations in western Andalucia over 2015-2020, incorporating measurements of algae counts and DST levels. We fitted a bivariate hidden Markov Model (HMM) incorporating an autoregressive correlation among the observed DST measurements to account for environmental persistence of DST. We then reconstruct the maximum-likelihood profile of algae presence in the water column at daily intervals using the Viterbi algorithm. Using historical monitoring data from Andalucia, the model estimated that potentially toxigenic Dinophysis algae is present at greater than or equal to 250 cells/L between< 1% and>10% of the year depending on the site and year. The historical time-series reconstruction enabled by this method may facilitate future investigations into temporal dynamics of toxigenic Dinophysis blooms.
引用
收藏
页码:557 / 585
页数:29
相关论文
共 50 条
  • [21] Speaker identification using autoregressive hidden Markov models and adaptive vector quantisation
    Bovbel, EE
    Kheidorov, IE
    Kotlyar, ME
    TEXT, SPEECH AND DIALOGUE, PROCEEDINGS, 2000, 1902 : 207 - 210
  • [22] HOAH: A Hybrid TCP Throughput Prediction with Autoregressive Model and Hidden Markov Model for Mobile Networks
    Wei, Bo
    Kanai, Kenji
    Kawakami, Wataru
    Katto, Jiro
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2018, E101B (07) : 1612 - 1624
  • [23] Forecasting violent events in the Middle East and North Africa using the Hidden Markov Model and regularized autoregressive models
    Hossain, K. S. M. Tozammel
    Gao, Shuyang
    Kennedy, Brendan
    Galstyan, Aram
    Natarajan, Prem
    JOURNAL OF DEFENSE MODELING AND SIMULATION-APPLICATIONS METHODOLOGY TECHNOLOGY-JDMS, 2020, 17 (03): : 269 - 283
  • [24] HIDDEN MARKOV MODELING OF SPEECH BASED ON A SEMICONTINUOUS MODEL
    HUANG, XD
    JACK, MA
    ELECTRONICS LETTERS, 1988, 24 (01) : 6 - 7
  • [25] Likert Pain Score Modeling: A Markov Integer Model and an Autoregressive Continuous Model
    Plan, E. L.
    Elshoff, J-P
    Stockis, A.
    Sargentini-Maier, M. L.
    Karlsson, M. O.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2012, 91 (05) : 820 - 828
  • [26] Hidden Markov Mixture Autoregressive Models: Stability and Moments
    Alizadeh, S. H.
    Rezakhah, S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (06) : 1087 - 1104
  • [27] Autoregressive Asymmetric Linear Gaussian Hidden Markov Models
    Puerto-Santana, Carlos
    Larranaga, Pedro
    Bielza, Concha
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 4642 - 4658
  • [28] Fault diagnosis methods for centrifugal pump based on autoregressive and continuous hidden Markov model
    Zhou, Yun-Long
    Liu, Chang-Xin
    Zhao, Peng
    Sun, Bin
    Hong, Wen-Peng
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2008, 28 (20): : 88 - 93
  • [29] Autoregressive Hidden Markov Model with Missing Data for Modelling Functional MR Imaging Data
    Dang, Shilpa
    Chaudhury, Santanu
    Lall, Brejesh
    Roy, Prasun Kumar
    TENTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING (ICVGIP 2016), 2016,
  • [30] Using Hidden Markov Modeling for Biogeographical Ancestry Analysis
    Currie, Melvin R.
    JOURNAL OF HUMANISTIC MATHEMATICS, 2019, 9 (02):