Modeling Dinophysis in Western Andalucia using a autoregressive hidden Markov model

被引:0
|
作者
Aron, Jordan [1 ]
Albert, Paul S. [1 ]
Gribble, Matthew O. [2 ]
机构
[1] NCI, Biostat Branch, Div Canc & Epidemiol, Rockville, MD 20850 USA
[2] Univ Alabama Birmingham, Sch Publ Hlth, Dept Epidemiol, Birmingham, AL 35294 USA
关键词
Autoregressive; EM algorithm; Harmful algal bloom; Missing data; Toxins; OKADAIC ACID; BLOOMS;
D O I
10.1007/s10651-022-00534-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Dinophysis spp. can produce diarrhetic shellfish toxins (DST) including okadaic acid and dinophysistoxins, and some strains can also produce non-diarrheic pectenotoxins. Although DSTs are of human health concern and have motivated environmental monitoring programs in many locations, these monitoring programs often have temporal data gaps (e.g., days without measurements). This paper presents a model for the historical time-series, on a daily basis, of DST-producing toxigenic Dinophysis in 8 monitored locations in western Andalucia over 2015-2020, incorporating measurements of algae counts and DST levels. We fitted a bivariate hidden Markov Model (HMM) incorporating an autoregressive correlation among the observed DST measurements to account for environmental persistence of DST. We then reconstruct the maximum-likelihood profile of algae presence in the water column at daily intervals using the Viterbi algorithm. Using historical monitoring data from Andalucia, the model estimated that potentially toxigenic Dinophysis algae is present at greater than or equal to 250 cells/L between< 1% and>10% of the year depending on the site and year. The historical time-series reconstruction enabled by this method may facilitate future investigations into temporal dynamics of toxigenic Dinophysis blooms.
引用
收藏
页码:557 / 585
页数:29
相关论文
共 50 条
  • [1] Modeling Dinophysis in Western Andalucía using an autoregressive hidden Markov model
    Jordan Aron
    Paul S. Albert
    Matthew O. Gribble
    Environmental and Ecological Statistics, 2022, 29 : 557 - 585
  • [2] Learning effective connectivity from fMRI using autoregressive hidden Markov model with missing data
    Dang, Shilpa
    Chaudhury, Santanu
    Lall, Brejesh
    Roy, Prasun Kumar
    JOURNAL OF NEUROSCIENCE METHODS, 2017, 278 : 87 - 100
  • [3] Autoregressive Asymmetric Linear Gaussian Hidden Markov Models
    Puerto-Santana, Carlos
    Larranaga, Pedro
    Bielza, Concha
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 4642 - 4658
  • [4] Autoregressive Hidden Markov Model with Missing Data for Modelling Functional MR Imaging Data
    Dang, Shilpa
    Chaudhury, Santanu
    Lall, Brejesh
    Roy, Prasun Kumar
    TENTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING (ICVGIP 2016), 2016,
  • [5] Tuberculosis Surveillance Using a Hidden Markov Model
    Rafei, A.
    Pasha, E.
    Orak, R. Jamshidi
    IRANIAN JOURNAL OF PUBLIC HEALTH, 2012, 41 (10) : 87 - 96
  • [6] An Application of Autoregressive Hidden Markov Models for Identifying Machine Operations
    Pantazis, Dimitrios
    Rodriguez, Adrian Ayastuy
    Conway, Paul P.
    West, Andrew A.
    ADVANCES IN MANUFACTURING TECHNOLOGY XXX, 2016, 3 : 193 - 198
  • [7] Bayesian estimation of an autoregressive model using Markov chain Monte Carlo
    Barnett, G
    Kohn, R
    Sheather, S
    JOURNAL OF ECONOMETRICS, 1996, 74 (02) : 237 - 254
  • [8] A modified hidden Markov model
    van der Hoek, John
    Elliott, Robert J.
    AUTOMATICA, 2013, 49 (12) : 3509 - 3519
  • [9] Signal denoising using wavelet and block hidden Markov model
    Liao, ZW
    Lam, ECM
    Tang, YY
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 2468 - 2471
  • [10] AGGREGATE CLAIM ESTIMATION USING BIVARIATE HIDDEN MARKOV MODEL
    Oflaz, Zarina Nukeshtayeva
    Yozgatligil, Ceylan
    Selcuk-Kestel, A. Sevtap
    ASTIN BULLETIN, 2019, 49 (01): : 189 - 215