Intrusion detection in network flows based on an optimized clustering criterion

被引:9
|
作者
Karimpour, Jaber [1 ]
Lotfi, Shahriar [1 ]
Tajari Siahmarzkooh, Aliakbar [1 ]
机构
[1] Univ Tabriz, Fac Math Sci, Dept Comp Sci, Tabriz, Iran
关键词
Attack; DARPA data set; flow; graph clustering; intrusion detection;
D O I
10.3906/elk-1601-105
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph-based intrusion detection approaches consider the network as a graph and detect anomalies based on graph metrics. However, most of these approaches succumb to the cluster-based behavior of the anomalies. To resolve this problem in our study, we use flow and graph-clustering concepts to create a data set first. A new criterion related to the average weight of clusters is then defined and a model is proposed to detect attacks based on the above-mentioned criterion. Finally, the model is evaluated using a DARPA data set. Results show that the proposed approach detects the attacks with high accuracy relative to methods described in previous studies.
引用
收藏
页码:1963 / 1975
页数:13
相关论文
共 50 条
  • [1] Intrusion Detection Using Clustering of Network Traffic Flows
    Bailey, Matthew
    Collins, Connor
    Sinda, Matthew
    Hu, Gongzhu
    2017 18TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNDP 2017), 2017, : 615 - 620
  • [2] CLUSTERING-BASED NETWORK INTRUSION DETECTION
    Zhong, Shi
    Khoshgoftaar, Taghi M.
    Seliya, Naeem
    INTERNATIONAL JOURNAL OF RELIABILITY QUALITY AND SAFETY ENGINEERING, 2007, 14 (02) : 169 - 187
  • [3] A Clustering based Algorithm for Network Intrusion Detection
    Arya, K. V.
    Kumar, Hemant
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON SECURITY OF INFORMATION AND NETWORKS, 2012, : 193 - 196
  • [4] Optimized clustering for anomaly intrusion detection
    Oh, SH
    Lee, WS
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, 2003, 2637 : 576 - 581
  • [5] Intrusion Detection Based on PCA and Fuzzy Clustering optimized by CS
    Li, Zixuan
    Su, Yixin
    Han, Qihang
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 6334 - 6339
  • [6] Intrusion detection method research based on optimized self-buildup clustering neural network
    Qiao, R
    Chen, B
    ICIA 2004: Proceedings of 2004 International Conference on Information Acquisition, 2004, : 144 - 146
  • [7] Clustering-Based Network Intrusion Detection System
    Fan, Chun-I
    Lai, Yen-Lin
    Shie, Cheng-Han
    2022 5TH IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING (IEEE DSC 2022), 2022,
  • [8] Network intrusion detection based on artificial immune clustering
    Zhong, J. (zhongjiang@cqu.edu.cn), 1600, Binary Information Press, Flat F 8th Floor, Block 3, Tanner Garden, 18 Tanner Road, Hong Kong (10):
  • [9] Adaptive clustering for network intrusion detection
    Oldmeadow, J
    Ravinutala, S
    Leckie, C
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2004, 3056 : 255 - 259
  • [10] Network traffic clustering for intrusion detection
    Arina, Nikishova
    Irina, Ananina
    Evgeny, Ananin
    PROCEEDINGS OF THE IV INTERNATIONAL RESEARCH CONFERENCE INFORMATION TECHNOLOGIES IN SCIENCE, MANAGEMENT, SOCIAL SPHERE AND MEDICINE (ITSMSSM 2017), 2017, 72 : 252 - 256