A WENO-Based Stochastic Galerkin Scheme for Ideal MHD Equations with Random Inputs

被引:8
作者
Wu, Kailiang [1 ]
Xiu, Dongbin [2 ]
Zhong, Xinghui [3 ]
机构
[1] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R China
[2] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[3] Zhejiang Univ, Sch Math Sci, Hangzhou 310058, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
subject Uncertainty quantification; ideal magnetohydrodynamics; generalized polynomial chaos; stochastic Galerkin; symmetric hyperbolic; finite volume WENO method; HYPERBOLIC SYSTEMS; CONSERVATION-LAWS; WAVE-EQUATIONS; UNCERTAINTY; MAGNETOHYDRODYNAMICS; APPROXIMATION; SIMULATIONS;
D O I
10.4208/cicp.OA-2020-0167
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate the ideal magnetohydrodynamic (MHD) equations with random inputs based on generalized polynomial chaos (gPC) stochastic Galerkin approximation. A special treatment with symmetrization is carried out for the gPC stochastic Galerkin method so that the resulting deterministic gPC Galerkin system is provably symmetric hyperbolic in the spatially one-dimensional case. We discretize the hyperbolic gPC Galerkin system with a high-order path-conservative finite volume weighted essentially non-oscillatory scheme in space and a third-order total variation diminishing Runge-Kutta method in time. The method is also extended to two spatial dimensions via the operator splitting technique. Several numerical examples are provided to illustrate the accuracy and effectiveness of the numerical scheme.
引用
收藏
页码:423 / 447
页数:25
相关论文
共 47 条
[1]  
Abgrall R, 2017, HANDB NUM ANAL, V18, P507, DOI 10.1016/bs.hna.2016.11.003
[2]  
Barth T, 2006, IMA VOL MATH APPL, V142, P69
[3]   High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products.: Applications to shallow-water systems [J].
Castro, Manuel ;
Gallardo, Jose E. M. ;
Pares, Carlos .
MATHEMATICS OF COMPUTATION, 2006, 75 (255) :1103-1134
[4]   Uncertainty analysis for the steady-state flows in a dual throat nozzle [J].
Chen, QY ;
Gottlieb, D ;
Hesthaven, JS .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 204 (01) :378-398
[5]   Energy conserving Galerkin approximation of two dimensional wave equations with random coefficients [J].
Chou, Ching-Shan ;
Li, Yukun ;
Xiu, Dongbin .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 381 :52-66
[6]  
DalMaso G, 1995, J MATH PURE APPL, V74, P483
[7]   A note on magnetic monopoles and the one-dimensional MHD Riemann problem [J].
Dellar, PJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 172 (01) :392-398
[8]  
Després B, 2013, LECT NOTES COMP SCI, V92, P105, DOI 10.1007/978-3-319-00885-1_3
[9]   Efficient Stochastic Galerkin Methods for Maxwell's Equations with Random Inputs [J].
Fang, Zhiwei ;
Li, Jichun ;
Tang, Tao ;
Zhou, Tao .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) :248-267
[10]   Entropies and Symmetrization of Hyperbolic Stochastic Galerkin Formulations [J].
Gerster, Stephan ;
Herty, Michael .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (03) :639-671