Zero-divisor graphs of Catalan monoid

被引:4
作者
Toker, Kemal [1 ]
机构
[1] Harran Univ, Fac Sci, Dept Math, Sanliurfa, Turkey
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2021年 / 50卷 / 02期
关键词
Catalan monoid; zero-divisor graph; perfect graph; clique number; SEMIGROUPS;
D O I
10.15672/hujms.702478
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C-n be the Catalan monoid on X-n = {1, , n} under its natural order. In this paper, we describe the sets of left zero-divisors, right zero-divisors and two sided zero-divisors of C-n; and their numbers. For n >= 4, we define an undirected graph Gamma(C-n) associated with C-n whose vertices are the two sided zero-divisors of C-n excluding the zero element theta of C-n with distinct two vertices alpha and beta joined by an edge in case alpha beta = theta = beta alpha. Then we first prove that Gamma(C-n) is a connected graph, and then we find the diameter, radius, girth, domination number, clique number and chromatic numbers and the degrees of all vertices of Gamma(C-n). Moreover, we prove that Gamma(C-n) is a chordal graph, and so a perfect graph.
引用
收藏
页码:387 / 396
页数:10
相关论文
共 17 条
[1]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[2]  
[Anonymous], 2001, Enumerative combinatorics
[3]   Combinatorial results for order-preserving and order-decreasing transformations [J].
Ayik, Gonca ;
Ayik, Hayrullah ;
Koc, Metin .
TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (04) :617-625
[4]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226
[5]   On a graph of monogenic semigroups [J].
Das, Kinkar Ch. ;
Akgunes, Nihat ;
Cevik, A. Sinan .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[6]   Zero divisor graphs of semigroups [J].
DeMeyer, F ;
DeMeyer, L .
JOURNAL OF ALGEBRA, 2005, 283 (01) :190-198
[7]   The zero-divisor graph of a commutative semigroup [J].
DeMeyer, FR ;
McKenzie, T ;
Schneider, K .
SEMIGROUP FORUM, 2002, 65 (02) :206-214
[8]  
Dirac G. A., 1961, Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, V25, P71, DOI [10.1007/BF02992776, DOI 10.1007/BF02992776]
[9]  
FELLER W., 1957, An Introduction to Probability Theory and Its Applications, V1
[10]  
Ganyushkin O, 2009, ALGEBRA APPL, V9, P1, DOI 10.1007/978-1-84800-281-4_1