Algebraic techniques for Maxwell's equations in commutative quaternionic electromagnetics

被引:10
作者
Guo, Zhenwei [2 ,3 ]
Zhang, Dong [2 ,3 ]
Vasiliev, Vasily, I [3 ]
Jiang, Tongsong [1 ,2 ,3 ]
机构
[1] Linyi Univ, Sch Math & Stat, Linyi 276005, Shandong, Peoples R China
[2] Heze Univ, Sch Math & Stat, Heze 274015, Shandong, Peoples R China
[3] North Eastern Fed Univ, Inst Math & Informat Sci, Yakutsk 677000, Russia
关键词
D O I
10.1140/epjp/s13360-022-02794-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Maxwell's equations of commutative quaternions play an important role in commutative quaternion electromagnetism. This paper studies the problem of solutions to Maxwell's equations of commutative quaternions by means of a real representation of commutative quaternion matrices. This paper first derives an algebraic technique for finding solutions of the least squares eigen-problem parallel to A alpha - alpha lambda parallel to(F) = min of the commutative quaternion matrix and also gives algebraic technique for finding the eigenvalues and corresponding eigenvectors of the commutative quaternion matrix. A numerical experiment is provided to demonstrate the feasibility of the real representation algorithm.
引用
收藏
页数:12
相关论文
共 18 条
[1]  
Agarwal R, 2017, ROM J PHYS, V62
[2]   Application of bicomplex (quaternion) algebra to fundamental electromagnetics: A lower order alternative to the Helmholtz equation [J].
Anastassiu, HT ;
Atlamazoglou, PE ;
Kaklamani, DI .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (08) :2130-2136
[3]   Commutative (Segre's) quaternion fields and relation with Maxwell equations [J].
Catoni, Francesco .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2008, 18 (01) :9-28
[4]   An introduction to commutative quaternions [J].
Catoni, Francesco ;
Cannata, Roberto ;
Zarnpetti, Paolo .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2006, 16 (01) :1-28
[5]   An introduction to constant curvature spaces in the commutative (Segre) quaternion geometry [J].
Catoni, Francesco ;
Cannata, Roberto ;
Zampetti, Paolo .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2006, 16 (02) :85-101
[6]   Denoising color images by reduced quaternion matrix singular value decomposition [J].
Gai, Shan ;
Yang, Guowei ;
Wan, Minghua ;
Wang, Lei .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2015, 26 (01) :307-320
[7]   Reduced quaternion matrix for color texture classification [J].
Gai, Shan ;
Wan, Minghua ;
Wang, Lei ;
Yang, Cihui .
NEURAL COMPUTING & APPLICATIONS, 2014, 25 (3-4) :945-954
[8]   Electromagnetic field behavior of 3D Maxwell's equations for chiral media [J].
Huang, Tsung-Ming ;
Li, Tiexiang ;
Chern, Ruey-Lin ;
Lin, Wen-Wei .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 379 :118-131
[9]  
Isokawa T, 2010, IEEE IJCNN
[10]   Twin-multistate commutative quaternion Hopfield neural networks [J].
Kobayashi, Masaki .
NEUROCOMPUTING, 2018, 320 :150-156