Fixed point theory for cyclic φ-contractions

被引:167
作者
Pacurar, Madalina [1 ]
Rus, Ioan A. [2 ]
机构
[1] Univ Babes Bolyai, Fac Econ & Business Adm, Cluj Napoca 400591, Romania
[2] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
关键词
Cyclic phi-contraction; Picard operator; Data dependence; Well-posedness of the fixed point problem; Limit shadowing property;
D O I
10.1016/j.na.2009.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Following [W.A. Kirk, P.S. Srinivasan, P. Veeramany, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory 4 (1) (2003) 79-89], we present a fixed point theorem for cyclic phi-contractions and following [I.A Rus, The theory of a metrical fixed point theorem: Theoretical and applicative relevances, Fixed Point Theory 9 (2) (2008) 541-559] we construct a theory of this fixed point theorem. This theory is in connection with data dependence, well-posedness of the fixed point problem, limit shadowing property and sequences of operators and fixed points. A Maia type fixed point theorem for cyclic phi-contractions is also given. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1181 / 1187
页数:7
相关论文
共 16 条
[1]  
Berinde V., 1997, CONTRACTII GEN APLIC, V22
[2]  
Kirk W.A., 2003, Fixed Point Theory, V4, P79
[3]  
Kirk WA, 2001, HANDBOOK OF METRIC FIXED POINT THEORY, P1
[4]  
PILJUGIN SJ, 1999, SHADOWING DYNAMICAL
[5]  
Reich S., 2011, Far East J. Math. Sci. Special Volume, P393, DOI DOI 10.1007/S10013-017-0251-1
[6]   COMPARISON OF VARIOUS DEFINITIONS OF CONTRACTIVE MAPPINGS [J].
RHOADES, BE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 226 (FEB) :257-290
[7]  
Rhoades BE, 2007, CARPATHIAN J MATH, V23, P11
[8]  
Rus I.A., 2008, Topics in Mathematics, Computer Science and Philosophy, P173
[9]  
Rus I.A., 2003, Sci. Math. Jpn., V58, P191
[10]  
Rus I.A., 2008, Fixed Point Theory