3D hydrogel-based microcapsules as an in vitro model to study tumorigenicity, cell migration and drug resistance

被引:19
作者
Ertekin, Oezlem [1 ,2 ]
Monavari, Mahshid [1 ,3 ,4 ]
Krueger, Rene [5 ,6 ]
Fuentes-Chandia, Miguel [1 ,7 ]
Parma, Beatrice [8 ]
Letort, Gaelle [9 ]
Tripal, Philipp [10 ]
Boccaccini, Aldo R. [1 ]
Bosserhoff, Anja K. [11 ]
Ceppi, Paolo [8 ,12 ]
Kappelmann-Fenzl, Melanie [11 ,13 ]
Leal-Egana, Aldo [1 ,14 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Inst Biomat, Cauerstr 6, D-91058 Erlangen, Germany
[2] Diagno Biotechnol, Marmara Technopk, Kocaeli, Turkey
[3] Univ Tehran Med Sci, Fac Pharm, Dept Pharmaceut Biomat, Tehran 1417614411, Iran
[4] Univ Tehran Med Sci, Fac Pharm, Med Biomat Res Ctr, Tehran 1417614411, Iran
[5] Friedrich Alexander Univ Erlangen Nurnberg, Dept Nephrol & Hypertens, D-91054 Erlangen, Germany
[6] Univ Clin Erlangen, D-91054 Erlangen, Germany
[7] Case Western Reserve Univ, Skeletal Res Ctr, Dept Biol, Cleveland, OH 44106 USA
[8] Friedrich Alexander Univ Erlangen Nurnberg, Interdisciplinary Ctr Clin Res IZKF, Glueckstr 6, D-91054 Erlangen, Germany
[9] Coll France, Ctr Interdisciplinary Res Biol, UMR7241 U1050, 11 Pl Marcelin Berthelot, F-75231 Paris 05, France
[10] Friedrich Alexander Univ Erlangen Nurnberg, Opt Imaging Ctr Erlangen, Cauerstr 3, D-91058 Erlangen, Germany
[11] Friedrich Alexander Univ Erlangen Nurnberg, Emil Fischer Zentrum, Inst Biochem, Fahrstr 17, D-91054 Erlangen, Germany
[12] Univ Southern Denmark, Dept Biochem & Mol Biol, Campusvej 55, DK-5230 Odense, Denmark
[13] Univ Appl Sci Deggendorf, Fac Appl Informat, D-94469 Deggendorf, Germany
[14] Heidelberg Univ, Inst Mol Syst Engn, INF 253, D-69120 Heidelberg, Germany
关键词
Tumor-like microcapsules; 3D cultures; Tumor-like model; Mechanical Stress; Drug resistance; pathogenic cells; instead of hypoxia; BREAST; CHEMORESISTANCE; CONTRIBUTES;
D O I
10.1016/j.actbio.2022.02.010
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this work, we analyzed the reliability of alginate-gelatin microcapsules as artificial tumor model. These tumor-like scaffolds are characterized by their composition and stiffness (similar to 25 kPa), and their capability to restrict -but not hinder- cell migration, proliferation and release from confinement. Hydrogel-based microcapsules were initially utilized to detect differences in mechano-sensitivity between MCF7 and MDA-MB-231 breast cancer cells, and the endothelial cell line EA.hy926. Additionally, we used RNA-seq and transcriptomic methods to determine how the culture strategy (i.e. 2D v/s 3D) may pre-set the expression of genes involved in multidrug resistance, being then validated by performing cytotoxicological tests and assays of cell morphology. Our results show that both breast cancer cells can generate elongated multicellular spheroids inside the microcapsules, prior being released (mimicking intravasation stages), a behavior which was not observed in endothelial cells. Further, we demonstrate that cells isolated from 3D scaffolds show resistance to cisplatin, a process which seems to be strongly influenced by mechanical stress, instead of hypoxia. We finally discuss the role played by aneuploidy in malignancy and resistance to anticancer drugs, based on the increased number of polynucleated cells found within these microcapsules. Overall, our outcomes demonstrate that alginate-gelatin microcapsules represent a simple, yet very accurate tumor-like model, enabling us to mimic the most relevant malignant hints described in vivo, suggesting that confinement and mechanical stress need to be considered when studying pathogenicity and drug resistance of cancer cells in vitro. Statement of significanceIn this work, we analyzed the reliability of alginate-gelatin microcapsules as an artificial tumor model. These scaffolds are characterized by their composition, elastic properties, and their ability to restrict cell migration, proliferation, and release from confinement. Our results demonstrate four novel outcomes: (i) studying cell migration and proliferation in 3D enabled discrimination between malignant and non-pathogenic cells, (ii) studying the cell morphology of cancer aggregates entrapped in alginate-gelatin microcapsules enabled determination of malignancy degree in vitro, (iii) determination that confinement and mechanical stress, instead of hypoxia, are required to generate clones resistant to anticancer drugs (i.e. cisplatin), and (iv) evidence that resistance to anticancer drugs could be due to the presence of polynucleated cells localized inside polymer-based artificial tumors. (C) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved
引用
收藏
页码:208 / 220
页数:13
相关论文
共 79 条
[1]   Polyploid giant cancer cells: Unrecognized actuators of tumorigenesis, metastasis, and resistance [J].
Amend, Sarah R. ;
Torga, Gonzalo ;
Lin, Ke-Chih ;
Kostecka, Laurie G. ;
de Marzo, Angelo ;
Austin, Robert H. ;
Pienta, Kenneth J. .
PROSTATE, 2019, 79 (13) :1489-1497
[2]  
Andrew S, QUALITY CONTROL TOOL
[3]   Role of the Drug Transporter ABCC3 in Breast Cancer Chemoresistance [J].
Balaji, Sai A. ;
Udupa, Nayanabhirama ;
Chamallamudi, Mallikarjuna Rao ;
Gupta, Vaijayanti ;
Rangarajan, Annapoorni .
PLOS ONE, 2016, 11 (05)
[4]  
Bednarzig Vera, 2021, Bioprinting, V23, pe00145, DOI 10.1016/j.bprint.2021.e00145
[5]   Scaffold stiffness influences breast cancer cell invasion via EGFR-linked Mena upregulation and matrix remodeling [J].
Berger, Anthony J. ;
Renner, Carine M. ;
Hale, Isaac ;
Yang, Xinhai ;
Ponik, Suzanne M. ;
Weisman, Paul S. ;
Masters, Kristyn S. ;
Kreeger, Pamela K. .
MATRIX BIOLOGY, 2020, 85-86 :80-93
[6]   The role of the tumor microenvironment in tumor cell intravasation and dissemination [J].
Borriello, Lucia ;
Karagiannis, George S. ;
Duran, Camille L. ;
Coste, Anouchka ;
Oktay, Maja H. ;
Entenberg, David ;
Condeelis, John S. .
EUROPEAN JOURNAL OF CELL BIOLOGY, 2020, 99 (06)
[7]   A new cell-laden 3D Alginate-Matrigel hydrogel resembles human breast cancer cell malignant morphology, spread and invasion capability observed "in vivo" [J].
Cavo, Marta ;
Caria, Marco ;
Pulsoni, Ilaria ;
Beltrame, Francesco ;
Fato, Marco ;
Scaglione, Silvia .
SCIENTIFIC REPORTS, 2018, 8
[8]   Beyond proteases: Basement membrane mechanics and cancer invasion [J].
Chang, Julie ;
Chaudhuri, Ovijit .
JOURNAL OF CELL BIOLOGY, 2019, 218 (08) :2456-2469
[9]   Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion [J].
D'Alterio, Crescenzo ;
Scala, Stefania ;
Sozzi, Gabriella ;
Roz, Luca ;
Bertolini, Giulia .
SEMINARS IN CANCER BIOLOGY, 2020, 60 :351-361
[10]   Fighting Drug Resistance through the Targeting of Drug-Tolerant Persister Cells [J].
De Conti, Giulia ;
Dias, Matheus Henrique ;
Bernards, Rene .
CANCERS, 2021, 13 (05) :1-15