Age and Time Operator of Evolutionary Processes

被引:2
作者
Antoniou, Ioannis [1 ]
Gialampoukidis, Ilias [1 ,2 ]
Ioannidis, E. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Sch Math, Thessaloniki 54124, Greece
[2] Ctr Res & Technol Hellas, Inst Informat Technol, Thessaloniki 57001, Greece
来源
QUANTUM INTERACTION, QI 2015 | 2016年 / 9535卷
关键词
Time operator; Internal age; Chaos; Bernoulli processes; Markov chains; Networks; INTERNAL TIME; ENTROPY; DYNAMICS; WAVELETS; SYSTEMS; IRREVERSIBILITY;
D O I
10.1007/978-3-319-28675-4_5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Time Operator and Internal Age are intrinsic features of Entropy producing Innovation Processes. The innovation spaces at each stage are the eigenspaces of the Time Operator. The internal Age is the average innovation time, analogous to lifetime computation. Time Operators were originally introduced for Quantum Systems and highly unstable Dynamical Systems. The goal of this work is to present recent extensions of Time Operator theory to regular Markov Chains and Networks in a unified way and to illustrate the Non-Commutativity of Net Operations like Selection and Filtering in the context of Knowledge Networks.
引用
收藏
页码:51 / 75
页数:25
相关论文
共 50 条
  • [11] Eco-evolutionary processes shaping floral nectar sugar composition
    Liu, Yicong
    Dunker, Susanne
    Durka, Walter
    Dominik, Christophe
    Heuschele, Jonna M.
    Honchar, Hanna
    Hoffmann, Petra
    Musche, Martin
    Paxton, Robert J.
    Settele, Josef
    Schweiger, Oliver
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [12] Universal level statistics of the out-of-time-ordered operator
    Rozenbaum, Efim B.
    Ganeshan, Sriram
    Galitski, Victor
    PHYSICAL REVIEW B, 2019, 100 (03)
  • [13] The effect of hubs and shortcuts on fixation time in evolutionary graphs
    Askari, Marziyeh
    Miraghaei, Zeinab Moradi
    Samani, Keivan Aghababaei
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [14] How to introduce time operator
    Wang, Zhi-Yong
    Xiong, Cai-Dong
    ANNALS OF PHYSICS, 2007, 322 (10) : 2304 - 2314
  • [15] Generalized urn models of evolutionary processes
    Benaïm, M
    Schreiber, SJ
    Tarrès, P
    ANNALS OF APPLIED PROBABILITY, 2004, 14 (03) : 1455 - 1478
  • [16] Operator entanglement entropy of the time evolution operator in chaotic systems
    Zhou, Tianci
    Luitz, David J.
    PHYSICAL REVIEW B, 2017, 95 (09)
  • [17] Time operator in quantum mechanics
    Wang Zhi-Yong
    Xiong Cai-Dong
    ACTA PHYSICA SINICA, 2007, 56 (06) : 3070 - 3075
  • [18] Time Operators Determined by Cylindrical Processes
    Suchanecki, Zdzislaw
    FRONTIERS IN PHYSICS, 2020, 8
  • [19] In Search of Time Lost: Asymmetry of Time and Irreversibility in Natural Processes
    Kuzemsky, A. L.
    FOUNDATIONS OF SCIENCE, 2020, 25 (03) : 597 - 645
  • [20] On totally global solvability of evolutionary equation with monotone nonlinear operator
    Chernov, A., V
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2022, 32 (01): : 130 - 149