Material-structure-performance integrated laser-metal additive manufacturing

被引:1248
作者
Gu, Dongdong [1 ]
Shi, Xinyu [1 ]
Poprawe, Reinhart [2 ]
Bourell, David L. [3 ]
Setchi, Rossitza [4 ]
Zhu, Jihong [5 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Jiangsu Prov Engn Lab Laser Addit Mfg High Perfor, Nanjing 210016, Peoples R China
[2] RWTH Aachen Fraunhofer Inst Laser Technol ILT, Chair Laser Technol LLT, D-52074 Aachen, Germany
[3] Univ Texas Austin, Mech Engn Dept, Lab Freeform Fabricat, Austin, TX 78712 USA
[4] Cardiff Univ, Sch Engn, High Value Mfg, Cardiff CF24 3AA, Wales
[5] Northwestern Polytech Univ, State IJR Ctr Aerosp Design & Addit Mfg, Sch Mech Engn, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
POWDER-BED FUSION; STAINLESS-STEEL NANOCOMPOSITES; HIGH-STRENGTH; MICROSTRUCTURE EVOLUTION; TOPOLOGY OPTIMIZATION; MECHANICAL-BEHAVIOR; ENERGY-ABSORPTION; MELT FLOW; ALLOY; DEPOSITION;
D O I
10.1126/science.abg1487
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Laser-metal additive manufacturing capabilities have advanced from single-material printing to multimaterial/multifunctional design and manufacturing. Material-structure-performance integrated additive manufacturing (MSPI-AM) represents a path toward the integral manufacturing of end-use components with innovative structures and multimaterial layouts to meet the increasing demand from industries such as aviation, aerospace, automobile manufacturing, and energy production. We highlight two methodological ideas for MSPI-AM-"the right materials printed in the right positions" and "unique structures printed for unique functions"-to realize major improvements in performance and function. We establish how cross-scale mechanisms to coordinate nano/microscale material development, mesoscale process monitoring, and macroscale structure and performance control can be used proactively to achieve high performance with multifunctionality. MSPI-AM exemplifies the revolution of design and manufacturing strategies for AM and its technological enhancement and sustainable development.
引用
收藏
页码:932 / +
页数:16
相关论文
共 198 条
[1]   Giga-voxel computational morphogenesis for structural design [J].
Aage, Niels ;
Andreassen, Erik ;
Lazarov, Boyan S. ;
Sigmund, Ole .
NATURE, 2017, 550 (7674) :84-+
[2]   Analysis and optimisation of vertical surface roughness in micro selective laser melting [J].
Abele, Eberhard ;
Kniepkamp, Michael .
SURFACE TOPOGRAPHY-METROLOGY AND PROPERTIES, 2015, 3 (03)
[3]   3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting [J].
Aboulkhair, Nesma T. ;
Simonelli, Marco ;
Parry, Luke ;
Ashcroft, Ian ;
Tuck, Christopher ;
Hague, Richard .
PROGRESS IN MATERIALS SCIENCE, 2019, 106
[4]   Prediction of microstructure in laser powder bed fusion process [J].
Acharya, Ranadip ;
Sharon, John A. ;
Staroselsky, Alexander .
ACTA MATERIALIA, 2017, 124 :360-371
[5]   Excellent strength-ductility synergy in metastable high entropy alloy by laser powder bed additive manufacturing [J].
Agrawal, P. ;
Thapliyal, S. ;
Nene, S. S. ;
Mishra, R. S. ;
McWilliams, B. A. ;
Cho, K. C. .
ADDITIVE MANUFACTURING, 2020, 32
[6]  
Airbus SE, 2016, PIONEERING BIONIC 3D
[7]   Novel TiB2-reinforced 316L stainless steel nanocomposites with excellent room- and high-temperature yield strength developed by additive manufacturing [J].
AlMangour, Bandar ;
Kim, Young-Kyun ;
Grzesiak, Dariusz ;
Lee, Kee-Ahn .
COMPOSITES PART B-ENGINEERING, 2019, 156 :51-63
[8]   Thermal behavior of the molten pool, microstructural evolution, and tribological performance during selective laser melting of TiC/316L stainless steel nanocomposites: Experimental and simulation methods [J].
AlMangour, Bandar ;
Grzesiak, Dariusz ;
Cheng, Jinquan ;
Ertas, Yavuz .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2018, 257 :288-301
[9]  
[Anonymous], 2020, PROC SPIE, DOI DOI 10.1016/J.PHPRO.2011.03.035
[10]  
[Anonymous], 2019, PROC SPIE, DOI DOI 10.1016/J.ADDMA.2018.11.026