Sum of Squares Lower Bounds from Pairwise Independence

被引:20
作者
Barak, Boaz [1 ]
Chan, Siu On [1 ]
Kothari, Pravesh K. [2 ]
机构
[1] Microsoft Res, Redmond, WA 98052 USA
[2] UT Austin, Austin, TX USA
来源
STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING | 2015年
关键词
Sum of Squares Hierarchy; CSPs; lower bounds; ALGORITHMS; PROOFS; GAPS;
D O I
10.1145/2746539.2746625
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that for every epsilon > 0 and predicate P : {0, 1}(k) -> {0, 1} that supports a pairwise independent distribution, there exists an instance / of the MAxP constraint satisfaction problem on n variables such that no assignment can satisfy more than a vertical bar P-1(1)vertical bar/2(k) + epsilon fraction of I's constraints but the degree Omega(n) Sum of Squares semidefinite programming hierarchy cannot certify that I is unsatisfiable. Similar results were previously only known for weaker hierarchies.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 27 条
[11]  
Chan Siu On, SUM SQUARES LOWER BO
[12]  
Charikar M, 2009, ACM S THEORY COMPUT, P283
[13]  
de la Vega WF, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P53
[14]   Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming [J].
Goemans, MX ;
Williamson, DP .
JOURNAL OF THE ACM, 1995, 42 (06) :1115-1145
[15]   Complexity of Positivstellensatz proofs for the knapsack [J].
Grigoriev, D .
COMPUTATIONAL COMPLEXITY, 2001, 10 (02) :139-154
[16]   Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity [J].
Grigoriev, D .
THEORETICAL COMPUTER SCIENCE, 2001, 259 (1-2) :613-622
[17]  
Khot S, 2002, ANN IEEE CONF COMPUT, P25
[18]   Global optimization with polynomials and the problem of moments [J].
Lasserre, JB .
SIAM JOURNAL ON OPTIMIZATION, 2001, 11 (03) :796-817
[19]  
Nesterov Y., 2000, High Performance Optimization, V33, P405, DOI DOI 10.1007/978-1-4757-3216-0_17
[20]   Goldreich's PRG: Evidence for near-optimal polynomial stretch [J].
O'Donnell, Ryan ;
Witmer, David .
2014 IEEE 29TH CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2014, :1-12