Sum of Squares Lower Bounds from Pairwise Independence

被引:19
作者
Barak, Boaz [1 ]
Chan, Siu On [1 ]
Kothari, Pravesh K. [2 ]
机构
[1] Microsoft Res, Redmond, WA 98052 USA
[2] UT Austin, Austin, TX USA
来源
STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING | 2015年
关键词
Sum of Squares Hierarchy; CSPs; lower bounds; ALGORITHMS; PROOFS; GAPS;
D O I
10.1145/2746539.2746625
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that for every epsilon > 0 and predicate P : {0, 1}(k) -> {0, 1} that supports a pairwise independent distribution, there exists an instance / of the MAxP constraint satisfaction problem on n variables such that no assignment can satisfy more than a vertical bar P-1(1)vertical bar/2(k) + epsilon fraction of I's constraints but the degree Omega(n) Sum of Squares semidefinite programming hierarchy cannot certify that I is unsatisfiable. Similar results were previously only known for weaker hierarchies.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 27 条
  • [1] [Anonymous], 2014, LECT NOTES MIT SEMIN
  • [2] Arora S., 2006, THEORY COMPUTING, V2, P19, DOI DOI 10.4086/toc.2006.v002a002
  • [3] RANDOMLY SUPPORTED INDEPENDENCE AND RESISTANCE
    Austrin, Per
    Hastad, Johan
    [J]. SIAM JOURNAL ON COMPUTING, 2011, 40 (01) : 1 - 27
  • [4] APPROXIMATION RESISTANT PREDICATES FROM PAIRWISE INDEPENDENCE
    Austrin, Per
    Mossel, Elchanan
    [J]. COMPUTATIONAL COMPLEXITY, 2009, 18 (02) : 249 - 271
  • [5] Rounding Sum-of-Squares Relaxations
    Barak, Boaz
    Kelner, Jonathan A.
    Steurer, David
    [J]. STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, : 31 - 40
  • [6] Barak B, 2012, STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, P307
  • [7] Barak Boaz, 2013, INNOVATIONS THEORETI, P197, DOI DOI 10.1145/2422436.2422460
  • [8] Barak Boaz, 2014, P INT C MATH ICM
  • [9] Benabbas S., 2012, THEORY COMPUTING, V8, P269, DOI DOI 10.4086/TOC.2012.V008A012
  • [10] Chan SO, 2013, STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, P447