Propagation through fractal media:: The Sierpinski gasket and the Koch curve

被引:4
作者
Campos, D [1 ]
Fort, J
Méndez, V
机构
[1] Univ Autonoma Barcelona, Dept Fis, Grp Fis Estadist, E-08193 Barcelona, Spain
[2] Univ Girona, Dept Fis, E-17071 Girona, Spain
[3] Univ Int Catalunya, Fac Ciencies Salut, Dept Med, E-08190 Barcelona, Spain
来源
EUROPHYSICS LETTERS | 2004年 / 68卷 / 06期
关键词
D O I
10.1209/epl/i2004-10284-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present new analytical tools able to predict the averaged behavior of fronts spreading through self-similar spatial systems starting from reaction-diffusion equations. The averaged speed for these fronts is predicted and compared with the predictions from a more general equation ( proposed in a previous work of ours) and simulations. We focus here on two fractals, the Sierpinski gasket (SG) and the Koch curve (KC), for two reasons, i.e. i) they are widely known structures and ii) they are deterministic fractals, so the analytical study of them turns out to be more intuitive. These structures, despite their simplicity, let us observe several characteristics of fractal fronts. Finally, we discuss the usefulness and limitations of our approach.
引用
收藏
页码:769 / 775
页数:7
相关论文
共 21 条
[1]  
[Anonymous], 1937, B MOSCOW U MATH MECH, DOI DOI 10.1007/978-94-011-3030-1_38
[2]  
Barabasi A.-L., 1995, FRACTAL CONCEPTS SUR, DOI [10.1017/CBO9780511599798, DOI 10.1017/CBO9780511599798]
[3]  
Ben-Avraham D., 2000, DIFFUSION REACTIONS
[4]   Anisotropy-isotropy transition in a Sierpinski gasket fractal [J].
Bhattacharyya, B ;
Chakrabarti, A .
PHYSICAL REVIEW B, 1998, 58 (05) :2376-2379
[5]   LOCALIZATION IN DISORDERED STRUCTURES - BREAKDOWN OF THE SELF-AVERAGING HYPOTHESIS [J].
BUNDE, A ;
DRAGER, J .
PHYSICAL REVIEW E, 1995, 52 (01) :53-56
[6]   Percolation in real wildfires [J].
Caldarelli, G ;
Frondoni, R ;
Gabrielli, A ;
Montuori, M ;
Retzlaff, R ;
Ricotta, C .
EUROPHYSICS LETTERS, 2001, 56 (04) :510-516
[7]   Description of diffusive and propagative behavior on fractals -: art. no. 031115 [J].
Campos, D ;
Méndez, V ;
Fort, J .
PHYSICAL REVIEW E, 2004, 69 (03) :031115-1
[8]  
Cranck J, 1956, MATH DIFFUSION
[9]   Continuous-time random walks and traveling fronts -: art. no. 030102 [J].
Fedotov, S ;
Méndez, V .
PHYSICAL REVIEW E, 2002, 66 (03)
[10]   Time-delayed theory of the neolithic transition in Europe [J].
Fort, J ;
Méndez, V .
PHYSICAL REVIEW LETTERS, 1999, 82 (04) :867-870