Travelling waves of discrete nonlinear Schrodinger equations with nonlocal interactions

被引:14
作者
Feckan, Michal [1 ,2 ]
Rothos, Vassilis M. [3 ]
机构
[1] Comenius Univ, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[2] Slovak Acad Sci, Math Inst, Bratislava 81473, Slovakia
[3] Aristotle Univ Thessaloniki, Fac Engn, Sch Math Phys & Computat Sci, Thessaloniki 54124, Greece
关键词
nonlocal interactions; discrete Schrodinger equation; travelling wave; symmetry; LATTICE DYNAMICAL-SYSTEMS; HAMILTONIAN-SYSTEMS; SOLITONS; LOCALIZATION; BREATHERS; EXISTENCE; PATTERNS; PULSES; ARRAYS;
D O I
10.1080/00036810903208130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence and bifurcation results are derived for quasi periodic travelling waves of discrete nonlinear Schrodinger equations with nonlocal interactions and with polynomial-type potentials. Variational tools are used. Several concrete nonlocal interactions are studied as well.
引用
收藏
页码:1387 / 1411
页数:25
相关论文
共 42 条
[1]   Generalized neighbor-interaction models induced by nonlinear lattices [J].
Abdullaev, F. Kh. ;
Bludov, Yu. V. ;
Dmitriev, S. V. ;
Kevrekidis, P. G. ;
Konotop, V. V. .
PHYSICAL REVIEW E, 2008, 77 (01)
[2]   ENERGY LOCALIZATION IN NONLINEAR FIBER ARRAYS - COLLAPSE-EFFECT COMPRESSOR [J].
ACEVES, AB ;
LUTHER, GG ;
DEANGELIS, C ;
RUBENCHIK, AM ;
TURITSYN, SK .
PHYSICAL REVIEW LETTERS, 1995, 75 (01) :73-76
[3]  
AGROTIS M, 2005, DISCRETE CONTIN DYN, P22
[4]   A new barrier to the existence of moving kinks in Frenkel-Kontorova lattices [J].
Aigner, AA ;
Champneys, AR ;
Rothos, VM .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 186 (3-4) :148-170
[5]  
[Anonymous], 2002, TRIGONOMETRIC SERIES
[6]   Interplay of nonlinearity and geometry in a DNA-related, Klein-Gordon model with long-range dipole-dipole interaction [J].
Archilla, JFR ;
Christiansen, PL ;
Gaididei, YB .
PHYSICAL REVIEW E, 2002, 65 (01)
[7]   Breathers in nonlinear lattices: Existence, linear stability and quantization [J].
Aubry, S .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) :201-250
[8]  
Bates PW, 2006, DISCRETE CONT DYN-A, V16, P235
[9]   Traveling waves of bistable dynamics on a lattice [J].
Bates, PW ;
Chen, XF ;
Chmaj, AJJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (02) :520-546
[10]   A discrete convolution model for phase transitions [J].
Bates, PW ;
Chmaj, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 150 (04) :281-305