X-ray Scattering Image Classification Using Deep Learning

被引:42
作者
Wang, Boyu [1 ]
Yager, Kevin [2 ]
Yu, Dantong [2 ]
Minh Hoai [1 ]
机构
[1] SUNY Stony Brook, Stony Brook, NY 11794 USA
[2] Brookhaven Natl Lab, Upton, NY 11973 USA
来源
2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017) | 2017年
关键词
D O I
10.1109/WACV.2017.83
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual inspection of x-ray scattering images is a powerful technique for probing the physical structure of materials at the molecular scale. In this paper, we explore the use of deep learning to develop methods for automatically analyzing x-ray scattering images. In particular, we apply Convolutional Neural Networks and Convolutional Autoencoders for x-ray scattering image classification. To acquire enough training data for deep learning, we use simulation software to generate synthetic x-ray scattering images. Experiments show that deep learning methods outperform previously published methods by 10% on synthetic and real datasets.
引用
收藏
页码:697 / 704
页数:8
相关论文
共 50 条
[41]   Deep Learning Models for Classification of Dental Diseases Using Orthopantomography X-ray OPG Images [J].
Almalki, Yassir Edrees ;
Din, Amsa Imam ;
Ramzan, Muhammad ;
Irfan, Muhammad ;
Aamir, Khalid Mahmood ;
Almalki, Abdullah ;
Alotaibi, Saud ;
Alaglan, Ghada ;
Alshamrani, Hassan A. ;
Rahman, Saifur .
SENSORS, 2022, 22 (19)
[42]   Chest X-ray Classification Using Deep Learning for Automated COVID-19 Screening [J].
Shelke A. ;
Inamdar M. ;
Shah V. ;
Tiwari A. ;
Hussain A. ;
Chafekar T. ;
Mehendale N. .
SN Computer Science, 2021, 2 (4)
[43]   Eichner classification based on panoramic X-ray images using deep learning: A pilot study [J].
Otsuka, Yuta ;
Indo, Hiroko ;
Kawashima, Yusuke ;
Tanaka, Tatsuro ;
Kono, Hiroshi ;
Kikuchi, Masafumi .
BIO-MEDICAL MATERIALS AND ENGINEERING, 2024, 35 (04) :377-386
[44]   Y Covid-19 Classification Using Deep Learning in Chest X-Ray Images [J].
Karhan, Zehra ;
Akal, Fuat .
2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,
[45]   Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images [J].
Sharmila, V. J. ;
Florinabel, Jemi D. .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
[46]   Automated Classification of Lung Injury from X-ray Images using Deep Learning Network [J].
Le, Huy ;
Do, Thanh-Ha .
PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, :2029-2034
[47]   X-Ray Bone Fracture Classification Using Deep Learning: A Baseline for Designing a Reliable Approach [J].
Tanzi, Leonardo ;
Vezzetti, Enrico ;
Moreno, Rodrigo ;
Moos, Sandro .
APPLIED SCIENCES-BASEL, 2020, 10 (04)
[48]   Detection and Classification of Lung Disease Using Deep Learning Architecture from X-ray Images [J].
Kabiraj, Anwesh ;
Meena, Tanushree ;
Reddy, Pailla Balakrishna ;
Roy, Sudipta .
ADVANCES IN VISUAL COMPUTING, ISVC 2022, PT I, 2022, 13598 :444-455
[49]   A Fully Automated Classification and Segmentation of X-Ray Coronary Angiography Using Deep Learning Approach [J].
Yang, Su ;
Kweon, Jihoon ;
Kim, Young-Hak ;
Roh, Jae-Hyung ;
Kang, Do-Yoon ;
Lee, Pil Hyung ;
Ahn, Jung-Min ;
Park, Duk-Woo ;
Lee, Seung-Whan ;
Park, Seong-Wook ;
Park, Seung-Jung .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 74 (13) :B193-B193
[50]   Robust and Scalable Deep Learning for X-ray Synchrotron Image Analysis [J].
Meister, Nicole ;
Guan, Ziqiao ;
Wang, Jinzhen ;
Lashley, Ronald ;
Liu, Jiliang ;
Lhermitte, Julien ;
Yager, Kevin ;
Qin, Hong ;
Sun, Bo ;
Yu, Dantong .
2017 NEW YORK SCIENTIFIC DATA SUMMIT (NYSDS), 2017,