X-ray Scattering Image Classification Using Deep Learning

被引:39
|
作者
Wang, Boyu [1 ]
Yager, Kevin [2 ]
Yu, Dantong [2 ]
Minh Hoai [1 ]
机构
[1] SUNY Stony Brook, Stony Brook, NY 11794 USA
[2] Brookhaven Natl Lab, Upton, NY 11973 USA
来源
2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017) | 2017年
关键词
D O I
10.1109/WACV.2017.83
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual inspection of x-ray scattering images is a powerful technique for probing the physical structure of materials at the molecular scale. In this paper, we explore the use of deep learning to develop methods for automatically analyzing x-ray scattering images. In particular, we apply Convolutional Neural Networks and Convolutional Autoencoders for x-ray scattering image classification. To acquire enough training data for deep learning, we use simulation software to generate synthetic x-ray scattering images. Experiments show that deep learning methods outperform previously published methods by 10% on synthetic and real datasets.
引用
收藏
页码:697 / 704
页数:8
相关论文
共 50 条
  • [1] A DEEP LEARNING ENSEMBLE APPROACH FOR X-RAY IMAGE CLASSIFICATION
    Esme, Engin
    Kiran, Mustafa Servet
    KONYA JOURNAL OF ENGINEERING SCIENCES, 2024, 12 (03):
  • [2] X-ray image-based pneumonia detection and classification using deep learning
    Asnake, Nigus Wereta
    Salau, Ayodeji Olalekan
    Ayalew, Aleka Melese
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (21) : 60789 - 60807
  • [3] Using Deep Learning for Defect Classification on a Small Weld X-ray Image Dataset
    Ajmi, Chiraz
    Zapata, Juan
    Martinez-Alvarez, Jose Javier
    Domenech, Gines
    Ruiz, Ramon
    JOURNAL OF NONDESTRUCTIVE EVALUATION, 2020, 39 (03)
  • [4] Using Deep Learning for Defect Classification on a Small Weld X-ray Image Dataset
    Chiraz Ajmi
    Juan Zapata
    José Javier Martínez-Álvarez
    Ginés Doménech
    Ramón Ruiz
    Journal of Nondestructive Evaluation, 2020, 39
  • [5] Periapical dental X-ray image classification using deep neural networks
    Vasdev, Dipit
    Gupta, Vedika
    Shubham, Shubham
    Chaudhary, Ankit
    Jain, Nikita
    Salimi, Mehdi
    Ahmadian, Ali
    ANNALS OF OPERATIONS RESEARCH, 2023, 326 (SUPPL 1) : 161 - 161
  • [6] A Localisation Study of Deep Learning Models for Chest X-ray Image Classification 2022
    Gascoigne-Burns, James
    Katsigiannis, Stamos
    2022 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI) JOINTLY ORGANISED WITH THE IEEE-EMBS INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN'22), 2022,
  • [7] DEEP LEARNING CLASSIFICATION OF CHEST X-RAY IMAGES
    Majdi, Mohammad S.
    Salman, Khalil N.
    Morris, Michael F.
    Merchant, Nirav C.
    Rodriguez, Jeffrey J.
    2020 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI 2020), 2020, : 116 - 119
  • [8] X-ray scatterometry using deep learning
    Liu, Shuo
    Yang, Tianjuan
    Zhang, Jiahao
    Ma, Jianyuan
    Liu, Shiyuan
    Chen, Xiuguo
    TENTH INTERNATIONAL SYMPOSIUM ON PRECISION MECHANICAL MEASUREMENTS, 2021, 12059
  • [9] Robust Medical X-Ray Image Classification by Deep Learning with Multi-Versus Optimizer
    Kumar, Thirugnanam
    Ponnusamy, Ramasamy
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2023, 13 (04) : 11406 - 11411
  • [10] Deep Learning Based Gun Classification in X-Ray Images
    Karakaya, Ismail
    Ozturk, Orkun
    Bal, Murat
    Esin, Yunus Emre
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,