Suppression of mitochondrial ROS by prohibitin drives glioblastoma progression and therapeutic resistance

被引:129
作者
Huang, Haohao [1 ,2 ,3 ]
Zhang, Songyang [1 ]
Li, Yuanyuan [1 ]
Liu, Zhaodan [1 ]
Mi, Lanjuan [1 ]
Cai, Yan [1 ]
Wang, Xinzheng [1 ]
Chen, Lishu [1 ]
Ran, Haowen [1 ]
Xiao, Dake [1 ]
Li, Fangye [4 ]
Wu, Jiaqi [1 ]
Li, Tingting [1 ]
Han, Qiuying [1 ]
Chen, Liang [1 ]
Pan, Xin [1 ]
Li, Huiyan [1 ]
Li, Tao [1 ]
He, Kun [1 ]
Li, Ailing [1 ,5 ]
Zhang, Xuemin [1 ,5 ,6 ]
Zhou, Tao [1 ,2 ]
Xia, Qing [1 ]
Man, Jianghong [1 ,2 ]
机构
[1] Natl Ctr Biomed Anal, State Key Lab Prote, Beijing, Peoples R China
[2] Nanhu Lab, Jiaxing, Zhejiang, Peoples R China
[3] Cent Theater Command Chinese Peoples Liberat Army, Gen Hosp, Dept Neurosurg, Wuhan, Peoples R China
[4] Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Neurosurg, Beijing, Peoples R China
[5] First Hosp Jilin Univ, Changchun, Peoples R China
[6] Beijing Inst Pharmacol & Toxicol, Natl Ctr Biomed Anal, State Key Lab Toxicol & Med Countermeasures, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
CANCER STEM-CELLS; OXIDATIVE STRESS; EMERGING ROLE; GLIOMA; SURVIVAL; PEROXIREDOXINS; RADIOTHERAPY; TEMOZOLOMIDE; ROCAGLAMIDE; PATHWAY;
D O I
10.1038/s41467-021-24108-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Low levels of reactive oxygen species (ROS) are crucial for maintaining cancer stem cells (CSCs) and their ability to resist therapy, but the ROS regulatory mechanisms in CSCs remains to be explored. Here, we discover that prohibitin (PHB) specifically regulates mitochondrial ROS production in glioma stem-like cells (GSCs) and facilitates GSC radiotherapeutic resistance. We find that PHB is upregulated in GSCs and is associated with malignant gliomas progression and poor prognosis. PHB binds to peroxiredoxin3 (PRDX3), a mitochondrion-specific peroxidase, and stabilizes PRDX3 protein through the ubiquitin-proteasome pathway. Knockout of PHB dramatically elevates ROS levels, thereby inhibiting GSC self-renewal. Importantly, deletion or pharmacological inhibition of PHB potently slows tumor growth and sensitizes tumors to radiotherapy, thus providing significant survival benefits in GSC-derived orthotopic tumors and glioblastoma patient-derived xenografts. These results reveal a selective role of PHB in mitochondrial ROS regulation in GSCs and suggest that targeting PHB improves radiotherapeutic efficacy in glioblastoma. How ROS levels are regulated in cancer stem cells and their contribution to cancer resistance is currently not clear. Here, the authors show that prohibitin regulates mitochondrial ROS production stabilizing the peroxidase PRDX3 and this accounts for radiotherapy resistance in glioma stem-like cells.
引用
收藏
页数:16
相关论文
共 50 条
[41]   A novel circular RNA circENTPD7 contributes to glioblastoma progression by targeting ROS1 [J].
Zhu, Fei ;
Cheng, Cheng ;
Qin, Hong ;
Wang, Hongsheng ;
Yu, Hailong .
CANCER CELL INTERNATIONAL, 2020, 20 (01)
[42]   Mitochondrial APE1 promotes cisplatin resistance by downregulating ROS in osteosarcoma [J].
Liu, Yufeng ;
Zhang, Zhimin ;
Li, Qing ;
Zhang, Liang ;
Cheng, Yi ;
Zhong, Zhaoyang .
ONCOLOGY REPORTS, 2020, 44 (02) :499-508
[43]   Reprogrammed mRNA translation drives resistance to therapeutic targeting of ribosome biogenesis [J].
Kusnadi, Eric P. ;
Trigos, Anna S. ;
Cullinane, Carleen ;
Goode, David L. ;
Larsson, Ola ;
Devlin, Jennifer R. ;
Chan, Keefe T. ;
De Souza, David P. ;
McConville, Malcolm J. ;
McArthur, Grant A. ;
Thomas, George ;
Sanij, Elaine ;
Poortinga, Gretchen ;
Hannan, Ross D. ;
Hannan, Katherine M. ;
Kang, Jian ;
Pearson, Richard B. .
EMBO JOURNAL, 2020, 39 (21)
[44]   Therapeutic control and resistance of the EGFR-driven signaling network in glioblastoma [J].
Azuaje, Francisco ;
Tiemann, Katja ;
Niclou, Simone P. .
CELL COMMUNICATION AND SIGNALING, 2015, 13
[45]   Cellular and molecular mechanisms of glioblastoma malignancy: Implications in resistance and therapeutic strategies [J].
Balca-Silva, Joana ;
Matias, Diana ;
do Carmo, Analia ;
Sarmento-Ribeiro, Ana Bela ;
Lopes, Maria Celeste ;
Moura-Neto, Vivaldo .
SEMINARS IN CANCER BIOLOGY, 2019, 58 :130-141
[46]   Mitochondrial dynamics in diabetic peripheral neuropathy: Pathogenesis, progression, and therapeutic approaches [J].
Yu, Honghai ;
Yang, Cunqing ;
Wang, Guoqiang ;
Wang, Xiuge .
MEDICINE, 2025, 104 (29)
[47]   Celecoxib reverses the glioblastoma chemo-resistance to temozolomide through mitochondrial metabolism [J].
Yin, Delong ;
Jin, Guoqing ;
He, Hong ;
Zhou, Wei ;
Fan, Zhenbo ;
Gong, Chen ;
Zhao, Jing ;
Xiong, Huihua .
AGING-US, 2021, 13 (17) :21268-21282
[48]   PRDX6 Drives Breast Cancer Progression Through Mitochondrial Biosynthesis and Oxidative Phosphorylation [J].
Dai, Mei ;
Zhang, Danhua .
CANCER MEDICINE, 2025, 14 (13)
[49]   Therapeutic Strategies for Overcoming Immunotherapy Resistance Mediated by Immunosuppressive Factors of the Glioblastoma Microenvironment [J].
Miyazaki, Tsubasa ;
Ishikawa, Eiichi ;
Sugii, Narushi ;
Matsuda, Masahide .
CANCERS, 2020, 12 (07) :1-21
[50]   DNA Damage Response in Glioblastoma Mechanism for Treatment Resistance and Emerging Therapeutic Strategies [J].
Bonm, Alipi ;
Kesari, Santosh .
CANCER JOURNAL, 2021, 27 (05) :379-385