Unmasking the anomalous rapid oxidation of refractory TiB2 at low temperatures

被引:16
作者
Cai, Xuecheng [1 ]
Ding, Shuaijun [1 ]
Wen, Kangkang [1 ]
Xu, Lidong [1 ]
Xue, Hengxu [1 ]
Xin, Shengwei [1 ]
Shen, Tongde [1 ]
机构
[1] Yanshan Univ, Clean Nano Energy Ctr, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Anomalous rapid oxidation; Refractory TiB2; Bi-layer oxide scale; Oxide scale configuration; Interfacial channels; MONOLITHIC TIB2; TITANIUM BORIDE; BEHAVIOR; RESISTANCE; COMPOSITE; DIBORIDE; KINETICS; MODEL;
D O I
10.1016/j.jeurceramsoc.2021.04.011
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
As a refractory transition-metal diboride, monolithic TiB2 oxidizes at temperatures below 400 degrees C. Here, we performed detailed microstructural investigations to study the low-temperature oxidation mechanism of monolithic TiB2. An anomalous rapid oxidation behavior is observed at similar to 500 degrees C, where the oxidation rate is much higher than that at a higher temperature of 650 degrees C. The anomalous rapid oxidation behavior originates from an unreported bi-layer oxide scale consisting of outer homogeneous B2O3/TiO2 mixed layer with a suprananometre-sized dual-phase amorphous-crystal microstructure and inner unstable Ti-B-O amorphous layer. By contrast, the oxide scale changes from homogeneous mixed microstructure to a laminated configuration at 650 degrees C, restoring the superior oxidation resistance. Our experimental results indicate that it is the configuration of the oxide scale that determines primarily the oxidation behavior of TiB2, which has been seldom envisaged in previous studies.
引用
收藏
页码:5100 / 5108
页数:9
相关论文
共 30 条
[1]   Oxidation Behavior of TiB2 Micro- and Nanoparticles [J].
Andrievskii, R. A. ;
Shul'ga, Yu. M. ;
Volkova, L. S. ;
Korobov, I. I. ;
Dremova, N. N. ;
Kabachkov, E. N. ;
Kalinnikov, G. V. ;
Shilkin, S. P. .
INORGANIC MATERIALS, 2016, 52 (07) :686-693
[2]   Improving the high-temperature oxidation resistance of TiB2 thin films by alloying with Al [J].
Bakhit, Babak ;
Palisaitis, Justinas ;
Thornberg, Jimmy ;
Rosen, Johanna ;
Persson, Per O. A. ;
Hultman, Lars ;
Petrov, Ivan ;
Greene, J. E. ;
Greczynski, Grzegorz .
ACTA MATERIALIA, 2020, 196 (196) :677-689
[3]   Oxidation resistance of two TiB2-based cermets [J].
Barandika, MG ;
Echeberría, JJ ;
Castro, F .
MATERIALS RESEARCH BULLETIN, 1999, 34 (07) :1001-1011
[4]   Processing and properties of monolithic TiB2 based materials [J].
Basu, B. ;
Raju, G. B. ;
Suri, A. K. .
INTERNATIONAL MATERIALS REVIEWS, 2006, 51 (06) :352-374
[5]   Oxidation behavior of melt-infiltrated SiC-TiB2 ceramic composites at 500-1300 °C in air [J].
Cao, Xiaoyu ;
Wang, Boli ;
Ma, Xiaokang ;
Feng, Lei ;
Shen, Xuetao ;
Wang, Chengbing .
CERAMICS INTERNATIONAL, 2021, 47 (07) :9881-9887
[6]   A STUDY OF OXYGEN SELF-DIFFUSION IN THE C-DIRECTION OF RUTILE USING A NUCLEAR TECHNIQUE [J].
DERRY, DJ ;
LEES, DG ;
CALVERT, JM .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1981, 42 (01) :57-64
[7]  
Einstein A, 1906, ANN PHYS-BERLIN, V19, P371
[8]   Oxidation resistance and strength retention of ZrB2-SiC ceramics [J].
Guo, Wei-Ming ;
Zhang, Guo-Jun .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2010, 30 (11) :2387-2395
[9]   Investigation of mechanical properties and oxidation resistance of CVD TiB2 ceramic coating on molybdenum [J].
Huang, Xiaoxiao ;
Sun, Shuchen ;
Tu, Ganfeng .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (01) :282-290
[10]   Formation of Oxide Scales on Zirconium Diboride-Silicon Carbide Composites During Oxidation: Relation of Subscale Recession to Liquid Oxide Flow [J].
Karlsdottir, Sigrun N. ;
Halloran, John W. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2008, 91 (11) :3652-3658