Numerical simulation of carbon arc discharge for graphene synthesis without catalyst

被引:4
作者
Ye, Kai [1 ]
Zhang, Da [1 ]
Zhang, Kaiwen [1 ]
Wang, Haoyu [1 ]
Liang, Feng [1 ,2 ]
Ma, Wenhui [1 ]
Yang, Bin [1 ]
Dai, Yongnian [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, State Key Lab Complex Nonferrous Met Resources Cl, Kunming 650093, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene; arc discharge; numerical simulation; growth mechanism; saturation temperature; mass density; NANOMATERIAL PRODUCTION; SCALE SYNTHESIS; HYDROGEN; TEMPERATURE; SHEETS; CONDUCTIVITY; MECHANISM; PRESSURE; FLUID; MODEL;
D O I
10.1088/2058-6272/ac02a9
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this study, graphene sheets are prepared under a hydrogen atmosphere without a catalyst, and the growth mechanism of graphene by direct current arc discharge is investigated experimentally and numerically. The size and layer numbers of graphene sheets increase with the arc current. Distributions of temperature, velocity, and mass fraction of carbon are obtained through numerical simulations. A high current corresponds to a high saturation temperature, evaporation rate, and mass density of carbon clusters. When the carbon vapor is saturated, the saturation temperatures are 3274.9, 3313.9, and 3363.6 K, and the mass densities are 6.4 x 10(22), 8.42 x 10(22), and 1.23 x 10(23) m(-3) under currents of 150, 200, and 250 A, respectively. A hydrogen-induced marginal growth model is used to explain the growth mechanism. Under a high current, the condensation coefficient and van der Waals force increase owing to the higher saturation temperature and mass density of carbon clusters, which is consistent with experimental results.
引用
收藏
页数:9
相关论文
共 41 条
  • [1] QUANTUM ELECTRODYNAMICS IN PRESENCE OF DIELECTRICS AND CONDUCTORS .2. THEORY OF DISPERSION FORCES
    AGARWAL, GS
    [J]. PHYSICAL REVIEW A, 1975, 11 (01): : 243 - 252
  • [3] Arc discharge boron nitrogen doping of carbon nanotubes
    Ben Belgacem, Abir
    Hinkov, Ivaylo
    Ben Yahia, Sana
    Brinza, Ovidiu
    Farhat, Samir
    [J]. MATERIALS TODAY COMMUNICATIONS, 2016, 8 : 183 - 195
  • [4] Fullerene and nanotube synthesis. Plasma spectroscopy studies
    Byszewski, P
    Lange, H
    Huczko, A
    Behnke, TF
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1997, 58 (11) : 1679 - 1683
  • [5] HOMOGENEOUS NUCLEATION IN METAL VAPORS .3. TEMPERATURE-DEPENDENCE OF CRITICAL SUPERSATURATION RATIO FOR IRON, LEAD, AND BISMUTH
    FRURIP, DJ
    BAUER, SH
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1977, 81 (10) : 1001 - 1006
  • [6] Electrochemical hydrogen storage of the graphene sheets prepared by DC arc-discharge method
    Guo, G. F.
    Huang, H.
    Xue, F. H.
    Liu, C. J.
    Yu, H. T.
    Quan, X.
    Dong, X. L.
    [J]. SURFACE & COATINGS TECHNOLOGY, 2013, 228 : S120 - S125
  • [7] The dynamic effects of metal vapour in gas metal arc welding
    Haidar, Jawad
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (16)
  • [8] Influence of the gas pressure on single-wall carbon nanotube formation
    Hinkov, I
    Farhat, S
    Scott, CD
    [J]. CARBON, 2005, 43 (12) : 2453 - 2462
  • [9] Gram-Scale Synthesis of Graphene Sheets by a Catalytic Arc-Discharge Method
    Huang, Liping
    Wu, Bin
    Chen, Jianyi
    Xue, Yunzhou
    Geng, Dechao
    Guo, Yunlong
    Yu, Gui
    Liu, Yunqi
    [J]. SMALL, 2013, 9 (08) : 1330 - 1335
  • [10] Modeling of atmospheric-pressure anodic carbon arc producing carbon nanotubes
    Keidar, M.
    Beilis, I. I.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (10)