Grassmannian Optimization for Online Tensor Completion and Tracking With the t-SVD

被引:16
作者
Gilman, Kyle [1 ]
Tarzanagh, Davoud Ataee [1 ]
Balzano, Laura [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
关键词
Tensors; Signal processing algorithms; Matrix decomposition; Discrete Fourier transforms; Electron tubes; Data models; Computational modeling; t-SVD; grassmannian optimization; online tensor completion; block-term decomposition; RANK MATRIX COMPLETION; FACTORIZATION; DECOMPOSITIONS; CONVERGENCE; ALGORITHMS;
D O I
10.1109/TSP.2022.3164837
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a new fast streaming algorithm for the tensor completion problem of imputing missing entries of a low-tubal-rank tensor using the tensor singular value decomposition (t-SVD) algebraic framework. We show the t-SVD is a specialization of the well-studied block-term decomposition for third-order tensors, and we present an algorithm under this model that can track changing free submodules from incomplete streaming 2-D data. The proposed algorithm uses principles from incremental gradient descent on the Grassmann manifold of subspaces to solve the tensor completion problem with linear complexity and constant memory in the number of time samples. We provide a local expected linear convergence result for our algorithm. Our empirical results are competitive in accuracy but much faster in compute time than state-of-the-art tensor completion algorithms on real applications to recover temporal chemo-sensing and MRI data under limited sampling.
引用
收藏
页码:2152 / 2167
页数:16
相关论文
共 61 条
[1]  
Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
[2]   Scalable tensor factorizations for incomplete data [J].
Acar, Evrim ;
Dunlavy, Daniel M. ;
Kolda, Tamara G. ;
Morup, Morten .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2011, 106 (01) :41-56
[3]  
[Anonymous], 2018, Proceedings of the 2018 SIAM International Conference on Data Mining
[4]  
Avron H., 2010, THESIS TEL AVIV U IS
[5]  
Balzano L., 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), P704, DOI 10.1109/ALLERTON.2010.5706976
[6]   Streaming PCA and Subspace Tracking: The Missing Data Case [J].
Balzano, Laura ;
Chi, Yuejie ;
Lu, Yue M. .
PROCEEDINGS OF THE IEEE, 2018, 106 (08) :1293-1310
[7]   Local Convergence of an Algorithm for Subspace Identification from Partial Data [J].
Balzano, Laura ;
Wright, Stephen J. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (05) :1279-1314
[8]  
Banco D, 2016, IEEE ENG MED BIO, P448, DOI 10.1109/EMBC.2016.7590736
[9]  
Bertsekas D., 2011, OPTIM MACH LEARN
[10]   Low-rank matrix completion via preconditioned optimization on the Grassmann manifold [J].
Boumal, Nicolas ;
Absil, P. -A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 475 :200-239