Joint Analysis of Multiple Traits in Rare Variant Association Studies

被引:12
|
作者
Wang, Zhenchuan [1 ]
Wang, Xuexia [2 ]
Sha, Qiuying [1 ]
Zhang, Shuanglin [1 ]
机构
[1] Michigan Technol Univ, Dept Math Sci, 1400 Townsend Dr, Houghton, MI 49931 USA
[2] Univ Wisconsin, Joseph J Zilber Sch Publ Hlth, Milwaukee, WI 53201 USA
关键词
Rare variants; multiple traits; association studies; multiple correlated phenotypes; pleiotropy; PRINCIPAL-COMPONENTS; DETECTING ASSOCIATION; GENETIC ASSOCIATION; SEMIPARAMETRIC TEST; COMMON DISEASES; GENOMIC CONTROL; MODEL APPROACH; SEQUENCE; PLEIOTROPY; STRATIFICATION;
D O I
10.1111/ahg.12149
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The joint analysis of multiple traits has recently become popular since it can increase statistical power to detect genetic variants and there is increasing evidence showing that pleiotropy is a widespread phenomenon in complex diseases. Currently, the majority of existing methods for the joint analysis of multiple traits test association between one common variant and multiple traits. However, the variant-by-variant methods for common variant association studies may not be optimal for rare variant association studies due to the allelic heterogeneity as well as the extreme rarity of individual variants. Current statistical methods for rare variant association studies are for one single trait only. In this paper, we propose an adaptive weighting reverse regression (AWRR) method to test association between multiple traits and rare variants in a genomic region. AWRR is robust to the directions of effects of causal variants and is also robust to the directions of association of traits. Using extensive simulation studies, we compare the performance of AWRR with canonical correlation analysis (CCA), Single-TOW, and the weighted sum reverse regression (WSRR). Our results show that, in all of the simulation scenarios, AWRR is consistently more powerful than CCA. In most scenarios, AWRR is more powerful than Single-TOW and WSRR.
引用
收藏
页码:162 / 171
页数:10
相关论文
共 50 条
  • [41] Test Gene-Environment Interactions for Multiple Traits in Sequencing Association Studies
    Zhang, Jianjun
    Sha, Qiuying
    Hao, Han
    Zhang, Shuanglin
    Gao, Xiaoyi Raymond
    Wang, Xuexia
    HUMAN HEREDITY, 2020, 84 (4-5) : 170 - 196
  • [42] Rare variant association testing for multicategory phenotype
    Bocher, Ozvan
    Marenne, Gaelle
    Saint Pierre, Aude
    Ludwig, Thomas E.
    Guey, Stephanie
    Tournier-Lasserve, Elisabeth
    Perdry, Herve
    Genin, Emmanuelle
    GENETIC EPIDEMIOLOGY, 2019, 43 (06) : 646 - 656
  • [43] Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale
    Li, Xihao
    Li, Zilin
    Zhou, Hufeng
    Gaynor, Sheila M.
    Liu, Yaowu
    Chen, Han
    Sun, Ryan
    Dey, Rounak
    Arnett, Donna K.
    Aslibekyan, Stella
    Ballantyne, Christie M.
    Bielak, Lawrence F.
    Blangero, John
    Boerwinkle, Eric
    Bowden, Donald W.
    Broome, Jai G.
    Conomos, Matthew P.
    Correa, Adolfo
    Cupples, L. Adrienne
    Curran, Joanne E.
    Freedman, Barry I.
    Guo, Xiuqing
    Hindy, George
    Irvin, Marguerite R.
    Kardia, Sharon L. R.
    Kathiresan, Sekar
    Khan, Alyna T.
    Kooperberg, Charles L.
    Laurie, Cathy C.
    Liu, X. Shirley
    Mahaney, Michael C.
    Manichaikul, Ani W.
    Martin, Lisa W.
    Mathias, Rasika A.
    McGarvey, Stephen T.
    Mitchell, Braxton D.
    Montasser, May E.
    Moore, Jill E.
    Morrison, Alanna C.
    O'Connell, Jeffrey R.
    Palmer, Nicholette D.
    Pampana, Akhil
    Peralta, Juan M.
    Peyser, Patricia A.
    Psaty, Bruce M.
    Redline, Susan
    Rice, Kenneth M.
    Rich, Stephen S.
    Smith, Jennifer A.
    Tiwari, Hemant K.
    NATURE GENETICS, 2020, 52 (09) : 969 - +
  • [44] Using extreme phenotype sampling to identify the rare causal variants of quantitative traits in association studies
    Li, Dalin
    Lewinger, Juan Pablo
    Gauderman, William J.
    Murcray, Cassandra Elizabeth
    Conti, David
    GENETIC EPIDEMIOLOGY, 2011, 35 (08) : 790 - 799
  • [45] Rare variant association test in family-based sequencing studies
    Wang, Xuefeng
    Zhang, Zhenyu
    Morris, Nathan
    Cai, Tianxi
    Lee, Seunggeun
    Wang, Chaolong
    Yu, Timothy W.
    Walsh, Christopher A.
    Lin, Xihong
    BRIEFINGS IN BIOINFORMATICS, 2017, 18 (06) : 954 - 961
  • [46] Statistical analysis strategies for association studies involving rare variants
    Bansal, Vikas
    Libiger, Ondrej
    Torkamani, Ali
    Schork, Nicholas J.
    NATURE REVIEWS GENETICS, 2010, 11 (11) : 773 - 785
  • [47] Powerful Rare-Variant Association Analysis of Secondary Phenotypes
    Liu, Hanyun
    Zhang, Hong
    GENETIC EPIDEMIOLOGY, 2025, 49 (01)
  • [48] Association detection between multiple traits and rare variants based on family data via a nonparametric method
    Chi, Jinling
    Xu, Meijuan
    Sheng, Xiaona
    Zhou, Ying
    PEERJ, 2023, 11
  • [49] A Rare Variant Association Test Based on Combinations of Single-Variant Tests
    Sha, Qiuying
    Zhang, Shuanglin
    GENETIC EPIDEMIOLOGY, 2014, 38 (06) : 494 - 501
  • [50] Convex combination sequence kernel association test for rare-variant studies
    Posner, Daniel C.
    Lin, Honghuang
    Meigs, James B.
    Kolaczyk, Eric D.
    Dupuis, Josee
    GENETIC EPIDEMIOLOGY, 2020, 44 (04) : 352 - 367