The entry-exit function and geometric singular perturbation theory

被引:69
作者
De Maesschalck, Peter [1 ]
Schecter, Stephen [2 ]
机构
[1] Hasselt Univ, Dept Math & Stat, B-3590 Diepenbeek, Belgium
[2] N Carolina State Univ, Dept Math, Box 8205, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Entry-exit function; Geometric singular perturbation theory; Bifurcation delay; Blow-up; Turning point; POINTS;
D O I
10.1016/j.jde.2016.01.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For small epsilon > 0, the system (x) over dot = epsilon, (z) over dot = h(x, z, s)z, with h(x, 0, 0) < 0 for x < 0 and h(x, 0, 0) > 0 for x > 0, admits solutions that approach the x-axis while x < 0 and are repelled from it when x > 0. The limiting attraction and repulsion points are given by the well-known entry-exit function. For h(x, z, s)z replaced by h(x, z, epsilon)z(2), we explain this phenomenon using geometric singular perturbation theory. We also show that the linear case can be reduced to the quadratic case, and we discuss the smoothness of the return map to the line z = z(0), z(0) > 0, in the limit epsilon -> 0. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:6697 / 6715
页数:19
相关论文
共 15 条
[1]  
[Anonymous], 1996, MEM AM MATH SOC
[2]  
BENOIT E, 1991, LECT NOTES MATH, V1493, P131
[3]   Overstability: Towards a global study [J].
Benoit, E ;
Fruchard, A ;
Schafke, R ;
Wallet, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (07) :873-878
[4]  
BENOIT E, 1981, CR ACAD SCI I-MATH, V293, P293
[6]   Time analysis and entry-exit relation near planar turning points [J].
De Maesschalck, P ;
Dumortier, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 215 (02) :225-267
[7]   THE CANARD UNCHAINED OR HOW FAST SLOW DYNAMICAL-SYSTEMS BIFURCATE [J].
DIENER, M .
MATHEMATICAL INTELLIGENCER, 1984, 6 (03) :38-49
[8]   Travelling waves in the Holling-Tanner model with weak diffusion [J].
Ghazaryan, Anna ;
Manukian, Vahagn ;
Schecter, Stephen .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2177)
[9]   SLOWLY VARYING JUMP AND TRANSITION PHENOMENA ASSOCIATED WITH ALGEBRAIC BIFURCATION PROBLEMS [J].
HABERMAN, R .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1979, 37 (01) :69-106
[10]   Extending geometric singular perturbation theory to nonhyperbolic points - Fold and canard points in two dimensions [J].
Krupa, M ;
Szmolyan, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (02) :286-314