Bethe ansatz solutions for Temperley-Lieb quantum spin chains

被引:0
作者
Ghiotto, RCT [1 ]
Malvezzi, AL [1 ]
机构
[1] Univ Estadual Paulista, UNESP Fac Ciencias, Dept Fis, BR-17033360 Bauru, SP, Brazil
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2000年 / 15卷 / 21期
关键词
D O I
10.1142/S0217751X00001243
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We solve the spectrum of quantum spin chains based on representations of the Temperley-Lieb algebra associated with the quantum groups U-q(X-n) for X-n = A(1), B-n, C-n and D-n. The tool is a modified version of the coordinate Bethe ansatz through a suitable choice of the Bethe states which give to all models the same status relative to their diagonalization. All these models have equivalent spectra up to degeneracies and the spectra of the lower-dimensional representations are contained in the higher-dimensional ones. Periodic boundary conditions, free boundary conditions and closed nonlocal boundary conditions are considered. Periodic boundary conditions, unlike free boundary conditions, bleak quantum group invariance. For closed nonlocal cases the models are quantum group invariant as well as periodic in a certain sense.
引用
收藏
页码:3395 / 3425
页数:31
相关论文
共 50 条
[41]   Braid Group, Temperley-Lieb Algebra, and Quantum Information and Computation [J].
Zhang, Yong .
ADVANCES IN QUANTUM COMPUTATION, 2009, 482 :49-89
[42]   THE FIBONACCI MODEL AND THE TEMPERLEY-LIEB ALGEBRA [J].
Kauffman, Louis H. ;
Lomonaco, Samuel J., Jr. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (29) :5065-5080
[43]   Quantum entanglement, unitary braid representation and Temperley-Lieb algebra [J].
Ho, C-L ;
Solomon, A. I. ;
Oh, C-H .
EPL, 2010, 92 (03)
[44]   The Temperley-Lieb tower and the Weyl algebra [J].
Harper, Matthew ;
Samuelson, Peter .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (05)
[45]   Standard Monomials for Temperley-Lieb Algebras [J].
Kim, SungSoon ;
Lee, Dong-il .
ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2016, 50 (04) :179-181
[46]   REPRESENTATIONS OF GRAPH TEMPERLEY-LIEB ALGEBRAS [J].
MARTIN, PP .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1990, 26 (03) :485-503
[47]   A Temperley-Lieb Analogue for the BMW Algebra [J].
Lehrer, G. I. ;
Zhang, R. B. .
REPRESENTATION THEORY OF ALGEBRAIC GROUPS AND QUANTUM GROUPS, 2010, 284 :155-+
[48]   Dimer representations of the Temperley-Lieb algebra [J].
Morin-Duchesne, Alexi ;
Rasmussen, Jorgen ;
Ruelle, Philippe .
NUCLEAR PHYSICS B, 2015, 890 :363-387
[49]   Categorification of the Temperley-Lieb algebra by bimodules [J].
Gobet, Thomas .
JOURNAL OF ALGEBRA, 2014, 419 :277-317
[50]   Ribbon Graphs and Temperley-Lieb Algebra [J].
Chbili, Nafaa .
KNOT THEORY AND ITS APPLICATIONS, 2016, 670 :299-312