Bethe ansatz solutions for Temperley-Lieb quantum spin chains

被引:0
作者
Ghiotto, RCT [1 ]
Malvezzi, AL [1 ]
机构
[1] Univ Estadual Paulista, UNESP Fac Ciencias, Dept Fis, BR-17033360 Bauru, SP, Brazil
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2000年 / 15卷 / 21期
关键词
D O I
10.1142/S0217751X00001243
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We solve the spectrum of quantum spin chains based on representations of the Temperley-Lieb algebra associated with the quantum groups U-q(X-n) for X-n = A(1), B-n, C-n and D-n. The tool is a modified version of the coordinate Bethe ansatz through a suitable choice of the Bethe states which give to all models the same status relative to their diagonalization. All these models have equivalent spectra up to degeneracies and the spectra of the lower-dimensional representations are contained in the higher-dimensional ones. Periodic boundary conditions, free boundary conditions and closed nonlocal boundary conditions are considered. Periodic boundary conditions, unlike free boundary conditions, bleak quantum group invariance. For closed nonlocal cases the models are quantum group invariant as well as periodic in a certain sense.
引用
收藏
页码:3395 / 3425
页数:31
相关论文
共 50 条
[31]   Monomials and Temperley-Lieb algebras [J].
Fan, CK ;
Green, RM .
JOURNAL OF ALGEBRA, 1997, 190 (02) :498-517
[32]   Affine Temperley-Lieb algebras [J].
Gnerre, S .
JOURNAL OF OPERATOR THEORY, 2000, 43 (01) :35-42
[33]   On the affine Temperley-Lieb algebras [J].
Fan, CK ;
Green, RM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 :366-380
[34]   THE MODULAR TEMPERLEY-LIEB ALGEBRA [J].
Spencer, Robert A. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (01) :177-208
[35]   Quantum symmetry algebras of spin systems related to Temperley-Lieb R-matrices [J].
Kulish, P. P. ;
Manojlovic, N. ;
Nagy, Z. .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (02)
[36]   The quantum spin chains of Temperley–Lieb type and the topological basis states [J].
Chunfang Sun ;
Kang Xue ;
Gangcheng Wang ;
Chengcheng Zhou ;
Guijiao Du .
Quantum Information Processing, 2013, 12 :3079-3092
[37]   Parabolic Temperley-Lieb modules and polynomials [J].
Sentinelli, Paolo .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 138 :1-28
[38]   The Fibonacci Model and the Temperley-Lieb Algebra [J].
Kauffman, Louis H. ;
Lomonaco, Samuel J., Jr. .
QUANTUM INFORMATION AND COMPUTATION VII, 2009, 7342
[39]   Projectors in the virtual Temperley-Lieb algebra [J].
Deng, Qingying ;
Jin, Xian'an ;
Kauffman, Louis H. .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2025, 34 (05)
[40]   TEMPERLEY-LIEB LATTICE MODELS ARISING FROM QUANTUM GROUPS [J].
BATCHELOR, MT ;
KUNIBA, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (11) :2599-2614