Bethe ansatz solutions for Temperley-Lieb quantum spin chains

被引:0
作者
Ghiotto, RCT [1 ]
Malvezzi, AL [1 ]
机构
[1] Univ Estadual Paulista, UNESP Fac Ciencias, Dept Fis, BR-17033360 Bauru, SP, Brazil
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2000年 / 15卷 / 21期
关键词
D O I
10.1142/S0217751X00001243
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We solve the spectrum of quantum spin chains based on representations of the Temperley-Lieb algebra associated with the quantum groups U-q(X-n) for X-n = A(1), B-n, C-n and D-n. The tool is a modified version of the coordinate Bethe ansatz through a suitable choice of the Bethe states which give to all models the same status relative to their diagonalization. All these models have equivalent spectra up to degeneracies and the spectra of the lower-dimensional representations are contained in the higher-dimensional ones. Periodic boundary conditions, free boundary conditions and closed nonlocal boundary conditions are considered. Periodic boundary conditions, unlike free boundary conditions, bleak quantum group invariance. For closed nonlocal cases the models are quantum group invariant as well as periodic in a certain sense.
引用
收藏
页码:3395 / 3425
页数:31
相关论文
共 50 条
[1]   A Bethe ansatz solution for the closed Uq[sl(2)] Temperley-Lieb quantum spin chains [J].
Lima-Santos, A. ;
Ghiotto, R. C. T. .
Journal of Physics A: Mathematical and General, 31 (02)
[2]   A Bethe ansatz solution for the closed Uq[sl(2)] Temperley-Lieb quantum spin chains [J].
Lima-Santos, A ;
Ghiotto, RCT .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02) :505-512
[3]   Universal Bethe ansatz solution for the Temperley-Lieb spin chain [J].
Nepomechie, Rafael I. ;
Pimenta, Rodrigo A. .
NUCLEAR PHYSICS B, 2016, 910 :910-928
[4]   Algebraic Bethe ansatz for the Temperley-Lieb spin-1 chain [J].
Nepomechie, Rafael I. ;
Pimenta, Rodrigo A. .
NUCLEAR PHYSICS B, 2016, 910 :885-909
[5]   Bethe ansatz for the Temperley-Lieb spin chain with integrable open boundaries [J].
Ribeiro, G. A. P. ;
Lima-Santos, A. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[6]   SPIN-S QUANTUM CHAINS AND TEMPERLEY-LIEB ALGEBRAS [J].
BATCHELOR, MT ;
BARBER, MN .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (01) :L15-L21
[7]   The quantum spin chains of Temperley-Lieb type and the topological basis states [J].
Sun, Chunfang ;
Xue, Kang ;
Wang, Gangcheng ;
Zhou, Chengcheng ;
Du, Guijiao .
QUANTUM INFORMATION PROCESSING, 2013, 12 (09) :3079-3092
[8]   Bethe ansatz solution of the anisotropic correlated electron model associated with the Temperley-Lieb algebra [J].
Lima-Santos, A ;
Roditi, I ;
Foerster, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1998, 13 (25) :4309-4324
[9]   Temperley-Lieb Quantum Channels [J].
Brannan, Michael ;
Collins, Benoit ;
Lee, Hun Hee ;
Youn, Sang-Gyun .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (02) :795-839
[10]   Spin Chains as Modules over the Affine Temperley-Lieb Algebra [J].
Pinet, Theo ;
Saint-Aubin, Yvan .
ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (06) :2523-2584