Exact dimensionality and projections of random self-similar measures and sets

被引:40
作者
Falconer, Kenneth J. [1 ]
Jin, Xiong [2 ]
机构
[1] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2014年 / 90卷
关键词
FRACTAL MEASURES; MARTINGALES;
D O I
10.1112/jlms/jdu031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the geometric properties of random multiplicative cascade measures defined on self-similar sets. We show that such measures and their projections and sections are almost surely exact dimensional, generalizing a result of Feng and Hu for self-similar measures. This, together with a compact group extension argument, enables us to generalize Hochman and Shmerkin's theorems on projections of deterministic self-similar measures to these random measures without requiring any separation conditions on the underlying sets. We give applications to self-similar sets and fractal percolation, including new results on projections, C-1-images and distance sets.
引用
收藏
页码:388 / 412
页数:25
相关论文
共 31 条
[1]  
[Anonymous], 2014, FRACTAL GEOMETRY MAT
[2]  
Athreya KB., 2004, Branching Processes
[3]  
Barral J, 1999, PROBAB THEORY REL, V113, P535, DOI 10.1007/s004400050217
[4]   Multifractal Analysis of Complex Random Cascades [J].
Barral, Julien ;
Jin, Xiong .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (01) :129-168
[5]  
DEKKING M, 2009, MATER RES SOC SYMP P, V1144, P269
[6]   FIXED-POINTS OF THE SMOOTHING TRANSFORMATION [J].
DURRETT, R ;
LIGGETT, TM .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 64 (03) :275-301
[7]  
Falconer K., 1997, Techniques in Fractal Geometry
[8]   Packing dimensions of projections and dimension profiles [J].
Falconer, KJ ;
Howroyd, JD .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1997, 121 :269-286
[9]   RANDOM FRACTALS [J].
FALCONER, KJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1986, 100 :559-582
[10]   Dimension Theory of Iterated Function Systems [J].
Feng, De-Jun ;
Hu, Huyi .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (11) :1435-1500