An FDTD algorithm with perfectly matched layers for general dispersive media

被引:59
|
作者
Fan, GX [1 ]
Liu, QH [1 ]
机构
[1] New Mexico State Univ, Klipsch Sch Elect & Comp Engn, Las Cruces, NM 88003 USA
基金
美国国家科学基金会;
关键词
dispersive medium; finite-difference time-domain (FDTD) method; ground-penetrating radar (GPR); perfectly; matched layer (PML); plasma; transient wave scattering;
D O I
10.1109/8.855481
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A three-dimensional (3-D) finite-difference time-domain (FDTD) algorithm with perfectly matched layer (PML) absorbing boundary condition (ABC) is presented for general inhomogeneous, dispersive, conductive media. The modified time-domain Maxwell's equations for dispersive media are expressed in terms of coordinate-stretching variables. We extend the recursive convolution (RC) and piecewise linear recursive convolution (PLRC) approaches to arbitrary dispersive media in a more general form. The algorithm is tested for homogeneous and inhomogeneous media with three typical kinds of dispersive media, i.e., Lorentz medium, unmagnetized plasma, and Debye medium. Excellent agreement between the FDTD results and analytical solutions is obtained for all testing cases with both RC and PLRC approaches. We demonstrate the applications of the algorithm with several examples in subsurface radar detection of mine-like objects, cylinders, and spheres buried in a dispersive half-space and the mapping of a curved interface. Because of their generality, the algorithm and computer program can be used to model biological materials, artificial dielectrics, optical materials, and other dispersive media.
引用
收藏
页码:637 / 646
页数:10
相关论文
共 50 条
  • [31] Modified Z-transform-based FDTD algorithm for the anisotropic perfectly matched layer
    Li, Jianxiong
    Dai, Jufeng
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2008, 21 (05) : 279 - 286
  • [32] On the development of efficient FDTD-PML formulations for general dispersive media
    Prokopidis, Konstantinos P.
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2008, 21 (06) : 395 - 411
  • [33] Perfectly matched layer for FDTD computations in piezoelectric crystals
    Chagla, F
    Cabani, C
    Smith, PM
    2004 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-3, 2004, : 517 - 520
  • [34] An HIE-FDTD algorithm for dispersive media with modified Lorentz model
    Chen, Faxiang
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2023, 65 (06) : 1549 - 1554
  • [35] A general form of perfectly matched layers for three- dimensional problems of acoustic scattering in lossless and lossy fluid media
    Katsibas, TK
    Antonopoulos, CS
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2004, 51 (08) : 964 - 972
  • [36] Perfectly matched layers for T, Φ formulation
    Matzenauer, Gernot
    Biro, Oszkar
    Hollaus, Karl
    Preis, Kurt
    Renhart, Werner
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2007, 26 (03) : 612 - 625
  • [37] Perfectly Matched Layers and Transformation Optics
    Teixeira, F. L.
    Chew, W. C.
    2009 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM AND USNC/URSI NATIONAL RADIO SCIENCE MEETING, VOLS 1-6, 2009, : 3015 - +
  • [38] Using perfectly matched layers for elastodynamics
    Chew, WC
    Liu, QH
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - 1996 DIGEST, VOLS 1-3, 1996, : 366 - 369
  • [39] Perfectly matched layers in static fields
    Bardi, I
    Biro, O
    Preis, K
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 2433 - 2436
  • [40] A General ADE-FDTD Algorithm for the Simulation of Different Dispersive Materials
    Al-Jabr, A. A.
    Alsunaidi, M. A.
    PIERS 2009 BEIJING: PROGESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS I AND II, 2009, : 278 - 281