UNIQUE SOLVABILITY OF ELLIPTIC PROBLEMS ASSOCIATED WITH TWO-PHASE INCOMPRESSIBLE FLOWS IN UNBOUNDED DOMAINS

被引:2
作者
Saito, Hirokazu [1 ]
Zhang, Xin [2 ]
机构
[1] Univ Elect, Dept Math, 5-1 Chofugaoka I chome, Chofu, Tokyo 1828585, Japan
[2] Tongji Univ, Sch Math Sci, 1239 Siping Rd, Shanghai 200092, Peoples R China
关键词
unbounded domain; two-phase incompressible flow; Helmholtz-Weyl decomposition;   Elliptic problem; NAVIER-STOKES EQUATIONS; FREE-BOUNDARY PROBLEM; L-Q REGULARITY; INFINITE-LAYER; SURFACE;
D O I
10.3934/dcds.2021051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper shows the unique solvability of elliptic problems associated with two-phase incompressible flows, which are governed by the two-phase Navier-Stokes equations with a sharp moving interface, in unbounded domains such as the whole space separated by a compact interface and the whole space separated by a non-compact interface. As a by-product, we obtain the Helmholtz-Weyl decomposition for two-phase incompressible flows.
引用
收藏
页码:4609 / 4643
页数:35
相关论文
共 31 条
[11]  
Galdi GP, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-09620-9
[12]   The Neumann problem and Helmholtz decomposition in convex domains [J].
Geng, Jun ;
Shen, Zhongwei .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (08) :2147-2164
[13]   Qualitative behaviour of solutions for the two-phase Navier-Stokes equations with surface tension [J].
Koehne, Matthias ;
Pruss, Jan ;
Wilke, Mathias .
MATHEMATISCHE ANNALEN, 2013, 356 (02) :737-792
[14]  
Maryani S, 2017, DIFFER INTEGRAL EQU, V30, P1
[15]  
MASLENNIKOVA V. N., 1986, Rend. Sem. Mat. Fis. Milano., V56, P125
[16]  
Miyakawa T., 1982, HIROSHIMA MATH J, V12, P115
[17]  
Miyakawa T., 1994, MATH J TOYAMA U, V17, P115
[18]  
Pruss J, 2016, MG MATH, V105, pCP1, DOI 10.1007/978-3-319-27698-4
[19]   SOME FREE BOUNDARY PROBLEM FOR TWO-PHASE INHOMOGENEOUS INCOMPRESSIBLE FLOWS [J].
Saito, Hirokazu ;
Shibata, Yoshihiro ;
Zhang, Xin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (04) :3397-3443
[20]   Global solvability of the Navier-Stokes equations with a free surface in the maximal Lp-Lq regularity class [J].
Saito, Hirokazu .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (03) :1475-1520