UNIQUE SOLVABILITY OF ELLIPTIC PROBLEMS ASSOCIATED WITH TWO-PHASE INCOMPRESSIBLE FLOWS IN UNBOUNDED DOMAINS

被引:2
作者
Saito, Hirokazu [1 ]
Zhang, Xin [2 ]
机构
[1] Univ Elect, Dept Math, 5-1 Chofugaoka I chome, Chofu, Tokyo 1828585, Japan
[2] Tongji Univ, Sch Math Sci, 1239 Siping Rd, Shanghai 200092, Peoples R China
关键词
unbounded domain; two-phase incompressible flow; Helmholtz-Weyl decomposition;   Elliptic problem; NAVIER-STOKES EQUATIONS; FREE-BOUNDARY PROBLEM; L-Q REGULARITY; INFINITE-LAYER; SURFACE;
D O I
10.3934/dcds.2021051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper shows the unique solvability of elliptic problems associated with two-phase incompressible flows, which are governed by the two-phase Navier-Stokes equations with a sharp moving interface, in unbounded domains such as the whole space separated by a compact interface and the whole space separated by a non-compact interface. As a by-product, we obtain the Helmholtz-Weyl decomposition for two-phase incompressible flows.
引用
收藏
页码:4609 / 4643
页数:35
相关论文
共 31 条
[1]   On a Resolvent Estimate of the Stokes Equation on an Infinite Layer Part 2, λ=0 Case [J].
Abe, Takayuki ;
Shibata, Yoshihiro .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2003, 5 (03) :245-274
[2]   Generalized Stokes resolvent equations in an infinite layer with mixed boundary conditions [J].
Abels, H .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (04) :351-367
[3]  
Adams R. A., 2003, SOBOLEV SPACES PURE, V140
[4]  
Dibenedetto E., 2016, Real Analysis, V2nd
[5]   Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains [J].
Fabes, E ;
Mendez, O ;
Mitrea, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 159 (02) :323-368
[6]   GENERALIZED RESOLVENT ESTIMATES FOR THE STOKES SYSTEM IN BOUNDED AND UNBOUNDED-DOMAINS [J].
FARWIG, R ;
SOHR, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1994, 46 (04) :607-643
[7]  
Farwig R., 1996, Analysis (Berl.)., V16, P1
[8]   On the Helmholtz decomposition in general unbounded domains [J].
Farwig, Reinhard ;
Kozono, Hideo ;
Sohr, Hermann .
ARCHIV DER MATHEMATIK, 2007, 88 (03) :239-248
[9]   An Lq-approach to Stokes and Navier-Stokes equations in general domains [J].
Farwig, Reinhard ;
Kozono, Hideo ;
Sohr, Hermann .
ACTA MATHEMATICA, 2005, 195 (01) :21-53
[10]  
FUJIWARA D, 1977, J FS U TOKYO 1A, V24, P685