Acoustic waves in fractal media: Non-integer dimensional spaces approach

被引:33
作者
Tarasov, Vasily E. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
关键词
Acoustic wave; Fractal media; Non-integer dimensional space; Supersonic mode; CONTINUOUS MEDIUM MODEL; EQUATIONS;
D O I
10.1016/j.wavemoti.2016.01.003
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Acoustic waves in fractal media are considered in the framework of continuum models with non-integer dimensional spaces. Using recently suggested vector calculus for non-integer dimensional space, we consider waves in isotropic fractal media. The wave equation for non-integer dimensional space is similar to the equation of waves in non-fractal medium with power-law heterogeneity. We discuss some properties of speed of acoustic waves in fractal materials. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 22
页数:5
相关论文
共 23 条
[1]  
Collins J., 1984, Renormalization
[2]   Waves in Fractal Media [J].
Demmie, Paul N. ;
Ostoja-Starzewski, Martin .
JOURNAL OF ELASTICITY, 2011, 104 (1-2) :187-204
[3]  
Falconer K. J., 1986, The geometry of fractal sets, V85
[4]  
Feder J., 1988, Fractals
[5]   On the wave propagation in isotropic fractal media [J].
Joumaa, Hady ;
Ostoja-Starzewski, Martin .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (06) :1117-1129
[6]   Fractal solids, product measures and fractional wave equations (vol 465, pg 2521, 2009) [J].
Li, J. ;
Ostoja-Starzewski, M. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2128) :1214-1214
[7]   From fractal media to continuum mechanics [J].
Ostoja-Starzewski, Martin ;
Li, Jun ;
Joumaa, Hady ;
Demmie, Paul N. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2014, 94 (05) :373-401
[8]   Equations of motion in a non-integer-dimensional space [J].
Palmer, C ;
Stavrinou, PN .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (27) :6987-7003
[9]  
Polyanin A.D., 2002, Handbook of Linear Partial Differential Equations for Engineers and Scientists
[10]  
Polyanin A.D., 1996, HDB DIFFERENTIAL EQU, P496